Загрузка...



ТРЕЩИНА БЕЗ ФРАКА ПЕРВИЧНЫЙ ДИАГНОЗ

Кусок квадратной формы где легко, Где туго рвался, противопоставив Упрямое сопротивленье силе.

(Д. Берри.и.ш)

Памятник Петру в Ленинграде – всемерно известный «Медный всадник» – свидетель удивительного потока событий. Кажется, что он вздымается не только над волнами Невы, но и над временами, возвышаясь над ними, независимый от них.

Между тем, монумент и разрушение связаны друг с другом. Еще сам Дидро, рекомендовавший своему другу Фальконе взяться за сооружение памятника Петру I, советовал: «…Петр взлетает на скалу, а из трещин этой скалы изливается прозрачная вода…»1 Позднее, когда в 12 верстах от Петербурга нашли огромный Гром-камень – будущее основание памятника – выяснилось, что когда-то в него ударила молния и «произвела на оном расселину». Эта расселина постепенно заполнилась землей и в ней выросли березы высотой в 25 футов. Не обошлось и без комедийных ситуаций, когда, стремясь пристроить своего бывшего сельского дьячка – учителя Тимофея Краснопевцева, фаворит Екатерины светлейший князь Григорий Алексеевич Потемкин сказал:

– Добро, старик! Будешь ты наблюдать каждое утро, крепко ли стоит памятник Петру. Назначаю тебя его смотрителем. И если заметишь какую неисправность, то немедленно доноси мне через дежурного флигель-адью-танта…

После смерти Тимофея Краснопевцева «смотрителей памятника» больше не назначали. В каком же состоянии находится он теперь? Недавно было сообщено, что в задних ногах коня развивались трещины. Что случилось с сооружением Фальконе? На этот вопрос можно было бы дать несколько ответов. Простейший из них основан на законах извечной науки о прочности – механике и звучит примерно так: это результат больших перегрузок на задние ноги и хвост коня. Это кажется тем более реальным, что скульптура обладает значительной па-

1 Воронов Н, Люди, события, памятники. – М.: Просвещение, 1984, с. 45.

русностыо и расположена с юга на север, а роза ветров в Ленинграде ориентирована с запада на восток. Поэтому под действием ветра конь как бы «переваливается» с ноги на ногу. Второй ответ глубже: металл памятника «устает». Ведь с момента его сооружения прошло более двухсот лет, и если ориентировочно считать, что ветер изменялся ежедневно, то переминаний с ноги на ногу было более 70 ООО! Есть и третий ответ – металл подвергается коррозии. Тем более, что вначале через трещины в корпусе накапливались тонны дождевой воды. Здесь следует остановиться и пояснить, что хотя прямых наследников у Тимофея Краснопевцева и нет, МЕДНЫЙ ВСАДНИК, относящийся к когорте мировых скульптурных ценностей человечества, не безнадзорен. В последнем столетии он, по меньшей мере, трижды подвергался капитальному ремонту. В 1909 году – со вскрытием люка в крупе коня. При этом, в частности, были проделаны отверстия в пятках всадника и в брюхе коня во избежание накапливания воды внутри монумента. Позднее эти отверстия были расчищены и расширены. Следующий ремонт, на этот раз без вскрытия люка, провели в 1935 году. В его описании отмечена значительная по размерам трещина длиной примерно в 30 сантиметров на правой задней ноге между копытом и пяткой коня. Ее тогда же запаяли. Поскольку, однако, в последние годы трещины нз ногах коня продолжали развиваться, в 1976 году было проведено обстоятельное исследование монумента, о котором подробно рассказал в журнале «Литейное производство» К. П. Лебедев1. Выяснилось, что прочность и устойчивость МЕДНОГО ВСАДНИКА была достигнута Фальконе, помимо всего прочего, за счет специального железного каркаса в крупе, задних ногах и хвосте коня. Большая часть каркаса, а его масса составляла около 4 тонн, была удалена впоследствии через люк. Однако часть его в виде кованых стальных стоек и брусьев является и поныне единственной опорой, удерживающей весь монумент. Роль литой бронзы в отношении прочности сводится к тому, чтобы связать отдельные части каркаса и обезопасить его от коррозии. Что касается трещин, то их происхождение оказалось следующим. При заливке бронзы непосредственно на

1 Лебедев К. П. Новые данные о литье памятника «Медный всадник»//Литейное производство. 1978. № 12. С. 37, 38.

стальной каркас появились горячие трещины и можно предполагать, что первым их видел сам Фальконе. Кроме того, образовались так называемые неслитины – чисто литейный дефект, принимаемый иной раз за холодные, то есть обусловленные механическим нагружением трещины. Печальная роль этих двух дефектов-горячих трещин и неслитин – заключалась в обеспечивании доступа воздуха и влаги к стальному каркасу. Его ржавление сопровождалось увеличением объема и распира-нием бронзовой оболочки, что в свою очередь интенсифицировало процесс. При ремонте в 1976 году дефектные куски бронзы были сняты, отлиты по моделям вставки и после установки кромки их тщательно зачеканили. Итак, если памятник Петру и «хворает», то причина тому-коррозионная. Справедливости ради отметим, что на процесс ржавления могут влиять и влияют механические напряжения и усталость, так и говорят: «Коррозия под напряжением». Так что же, неужели ничему не дано победить время и творение Фальконе рано или поздно обречено? Возможно это бы и произошло, случись нарисованное Александром Сергеевичем Пушкиным в действительности

За ним несется всадник медный На звонко скачущем коне

– динамических нагрузок памятник бы не выдержал. Сегодня же, несмотря на всю экспрессию, неподвижно взмывший на каменной волне Петр вне времен и опасений. Забота и внимание пусть не бессмертных, но талантливых и преданных искусству и истории страны людей позволят монументу неколебимо стоять века!

В этом рассказе нас интересует первый подход к причинам разрушения. Ведь разрушение-явление столь же древнее, как человеческая цивилизация. Вначале оно «нападало» на примитивное человеческое жилище и каменный топор, позднее – на деревянные дома, конструкции мостов и каравелл.

Вот как Торнтон Уайлдер описывает разрушение древнего моста: «В полдень в пятницу 20 июля 1714года рухнул самый красивый мост в Перу и сбросил в пропасть пятерых путников. Мост стоял на горной дороге между Лимой и Куско, и каждый день по нему проходили сотни людей. Инки сплели его из ивняка больше века назад, и его показывали всем приезжим. Это была просто лестница с тонкими перекладинами и перилами

из сухой лозы, перекинутая через ущелье… но люди – даже вице-король, даже архиепископ Лимы – предпочитали идти по знаменитому мосту короля Людовика Святого. Сам Людовик Святой французский охранял его – своим именем и глиняной церковкой на дальней стороне. Мост казался одной из тех вещей, которые существуют вечно: нельзя было представить себе, что он обрушится…»1

Нет ничего удивительного в том, что инки не знали ни о прочности, ни о законах механики. Но мы знаем, что задолго до случившегося, в конце XV-начале XVI веков, великий Леонардо да Винчи уже пользовался расчетами деревянных конструкций, говорил о мельчайших частицах древесины, расшатывающихся под действием переменной нагрузки, о проникновении в материал «пространства», еще более раздвигающего их и приводящего к появлению «полости», т. е в современном понимании трещины. Мало того, да Винчи хорошо знал опасные точки конструкции, к которым он относил, например, шпоночные, пазовые и другие соединения. Особенно угрожающими представлялись ему различные «тупики», в таких соединениях, то есть места, в которых плоскости соприкосновения смежных поверхностей меняют свое направление. Так Леонардо да Винчи пришел к одному из самых важных понятий современной механики прочности – понятию концентрации и концентратора напряжений. Не надеясь на Людовика Святого французского, великий мыслитель и ученый заложил тем самым основы современной механики разрушения. Это тем более удивительно, что речь-то идет о средних веках, времени, когда ограниченность знаний и беспомощность человека перед силами природы толкали его на фаталистическое представление о мире.

Что же такое концентрация напряжений? Представьте себе, читатель, простую задачу: надо разрезать лист резины. Способов для этого много. Можно, например, резать его ножницами. Но если резина достаточно толста, вряд ли мы справимся с задачей. Попробуем ножом. Но при этом можно повредить поверхность стола. Сделаем проще – изогнем слой резины и легко проведем по нему лезвием бритвы. При этом сразу же появляется

' Уайлдер Т. Мост короля Людовика Святого.-М.: Прогресс, 1976. С, 25-26.

быстро вскрывающийся разрез. Еще одно движение лезвием и ;лесго изгиба как бы вскрывается на все свое сечение. Что же произошло? Когда слой резины согнули, мы «сформировали его и «загнали» поле напряжений. Это поле стремится распрямить резину и исчезнуть. Тут-то и приходит ему на помощь лезвие: оно создает вначале маленький надрез – концентратор напряжений, небольшой участок материала, как бы сосредоточивающий всю энергию упруго-деформированного объема на очень маленьком «пятачке». Если вдуматься, то это нисколько не отличается от военной практики прорыва фронта противника на узенькой полосе, где можно собрать превосходящие силы, стянув свои войска с других участков. А как только фронт прорван… в него со всех концов устремляется основная лавина войск. Концентратор напряжений – это очаг разрушения. Интересно, что чем он «лучше», то есть острее, тем скорее наступит разрушение, иначе говоря тем «хуже» для конструкции. Это и понятно, во всяком случае, на словах, коль скоро мы решили не пользоваться формулами и математическими расчетами.

Для дальнейшего, однако, нам следует иметь в виду, что с увеличением остроты надреза, напряжения в его вершине растут очень быстро – обратно пропорционально корню квадратному из радиуса надреза. Это означает, что если он размером в одну десятую сантиметра, то напряжения в нем возрастут, примерно, в три раза. А если он совсем мал и составляет одну десятитысячную сантиметра, то существующие в металле напряжения увеличатся в сто раз.

Казалось бы, тут немедленно и последует разрушение. Но, к счастью,

…если вдруг, вкусивший всех наук, читатель мой заметит справедливо: – Все это ложь, изложенная длинно. – отвечу я: – Конечно, ложь, мой друг.

(Б. Ахмадулина)

Природа позаботилась, и для очень широкого круга практически важных материалов «ввела» своего рода предохранительный механизм – пластическую деформацию. Она, а не разрушение возникает прежде всего в очень остром надрезе в стали. Вспомните, что происходит, когда вы хотите сломать медную проволоку. Много раз перегибая ее, вы замечаете, что наконец, по-

явилась трещина и произошло разрушение. Этот процесс можно ускорить, предварительно надрубив проволоку. Но все равно какой-то изгиб с пластической деформацией в меди, алюминии и низкоуглеродистой стали необходим. Масштаб этого явления в зависимости от материала (скажем, в мраморе и сливочном масле, принесенном с мороза) весьма различен, но явление почти всегда существует. Тем не менее здесь все не просто и возможны разные точки зрения. Согласно одной из них, пластическая деформация совсем не необходима для разрушения – ее может и не быть, а конструкция все-таки разрушится. И надо сказать, что хотя у этой точки зрения не слишком много приверженцев, она, опираясь на законы разрушения подлинно хрупких материалов (типа стекла), тоже довольно убедительна.

Но к этой проблеме мы еще вернемся.

А пока, чтобы разобраться в существующих точках зрения на это явление, надо еще немного порассуждать, надо вооружиться тонким надежным скальпелем, прежде чем мы поймем, как же превратить вершину надреза в трещину, обойдя или использовав при этом пластическую деформацию.

Обратимся к тому, что представляет сущность чисто механического подхода к разрушению.

Стоит ли слишком категорично разделять концентратор напряжений и трещину? В конечном итоге они ведь различаются только тем, что в концентраторе вершина сравнительно тупая, а в трещине она невероятно остра и исчисляется стомиллионными долями сантиметра, то есть порядка межатомного расстояния. Меняется, таким образом, лишь масштаб концентрации напряжений, но не сама, по мнению механики, сущность процесса. Поэтому отнюдь не обязательно детально, на уровне поведения отдельных атомов, анализировать зарождение исходной микротрещины на дне надреза.

Ну, а как быть при таком подходе с ролью пластической деформации? Ответ прост: не надо драматизировать! Да, пластическая деформация существует; да, она предшествует разрушению. Ее роль? Пожиратель энергии, нагнетаемой внешней нагрузкой в тело. Если разрушения нет, вся энергия идет на деформирование. Если разрушение уже действует, то лишь часть внешней энергии идет на его развитие, а вторая – на деформирование. В последнем случае разрушение происходит под

аккомпанемент пластического течения, так сказать под сурдинку.

В таком подходе много недостатков. В нем нет ответа на извечные вопросы: почему и как образовалась трещина из концентратора, как связана пластическая деформация с разрушением физически, какова структура материала в зоне зарождения трещины и многие другие. Но вместе с тем подход этот отличается и уникальными достоинствами. Он позволяет рассчитать реальные виды разрушения именно потому, что пренебрегает тонкими структурными деталями, численная оценка которых всегда трудна. Ясно, что рассчитать любое механическое устройство гораздо проще, чем сложнейшие процессы атомного масштаба.

Едва ли не самым ярким примером такого подхода к оценке прочности материала явилась теория, предложенная английским инженером, а впоследствии авиаконструктором А. Гриффитсом. Он обратил внимание на то, что реальная прочность конструкций всегда ниже той, которую можно было бы от нее ожидать. Это явление он объяснил так: каким бы монолитным не казался металл извне, он содержит в себе трещины. Откуда они? Какова их природа? На эти вопросы Гриффите ответов не нашел, да, вероятно, и не искал их. Они пришли позднее, через 30-40 лет и найдены были другими исследователями. Но в главном, и это потом было подтверждено физиками многократно, Гриффите был прав: металл действительно содержит трещины самых разных размеров и нередко очень опасных. Эти трещины, как болезни, развиваясь, сокращали жизнь деталей, обрекая их на преждевременную кончину.

В чем же состоит механизм их влияния на прочность?

В конечном итоге все сводится к той же концентрации напряжений. Допустим, в куске металла есть большая трещина. Она, естественно, уменьшает сечение, сопротивляющееся приложенной нагрузке, и на оставшееся тело материала действуют большие напряжения. Дело, однако, столь простым случаем не ограничивается. Даже, если бы пластина металла была бесконечно велика, все равно в вершине трещины напряжения как бы аккумулируются и способны в несколько раз, а иногда, как мы уже говорили, на много порядков превышать их средние значения. Это происходит в объеме металла

примерно того же размера, что и размер трещины. Интересную форму имеет область, в которой эти напряжения накапливаются – что-то вроде ушей по обе стороны вершины трещины. В этих «ушах» скапливается большая упругая энергия, стремящаяся разорвать металл. И если трещина находится в напряженном металле, она всегда с «ушами». Она может ими даже «хлопать» – при изменении режима ее роста или когда трещина располагается на границе между двумя различными слоями в композитном материале. Это означает изменение распределения напряжений в окрестностях вершины трещины. Об ушной проблеме „читателю уже известно больше того, что знал в свое время Гриффите. Экспериментально и теоретически такое распределение напряжений было подтверждено лишь через 15-20 лет после работ Гриффитса. И тем не менее Гриффите нашел в принципе правильный ответ, хотя и исходил из того, что сконцентрированное упругое поле как бы окружает всю трещину. Когда-то знаменитый физик Р. Вуд писал,

что в молодости, начиная читать лекцию по физике, он был впереди студентов на два часа, а к концу лекции их знания сравнивались. Но эти исторические «два часа», отделившие Гриффитса от современников, и позволили ему обессмертить свою идею.

Сама задача была решена Гриффитсом следующим образом. Трещина сконцентрировала упругую энергию. Допустим, трещина подросла. Тогда часть упругой энергии разрядится, и этот процесс природе выгоден, как выгодно любое понижение энергии. На что же идет эта энергия? Естественно, на разрушение, решил Гриффите, А точнее на образование двух поверхностей трещины, и связанную с ними поверхностную энергию. Дело в том, что не только металл, но даже мыльный пузырь в граничном слое имеет свою поверхностную энергию, только у металла она в расчете на единицу поверхности в 10- 15 раз больше, чем у мыльной пленки. Хорошо известно, что поверхности жидкостей и жидких пленок всегда стремятся сократиться. В твердых металлах этого в отличие от жидкости не происходит – слишком велика их прочность, но стремление такое всегда есть и в некоторых условиях, например, когда металл находится в расплавленном состоянии, пленка металла очень похожа на жидкую. Поэтому, чтобы создать свободную поверхность, надо затратить работу. Так вот, при образовании трещины возникают две свободные поверхности и каждая из них – носитель запаса поверхностной энергии. Гриффите решил, что вся разрядившаяся упругая энергия идет на создание поверхностной энергии двух половинок разрушенного металла. Допустим, продолжал Гриффите, что образование трещины требует большей энергии, чем освобождающийся запас упругой энергии. Очевидно, что разрушения в этом случае не произойдет. А если наоборот – выделяющейся упругой энергии с лихвой достаточно для покрытия энергетического дефицита, связанного с образованием двух поверхностей трещины? Тогда начинается стремительное развитие трещины и конструкция моста, резервуара, самолета или корпуса ракеты «умирает».

Все дальнейшее развитие механики и физики показало, что Гриффите нарисовал в основном правильную картину развития событий, но в деталях он был не точен или не прав. Например, ему казалось, что развитие трещины должно происходить со скоростью звука. Опыт

этого не подтвердил – трещина по крайней мере вдвое медлительнее.

Важнее оказалось другое. У Гриффитса трещина была совершенно хрупкой. Это означает, что при разрушении пластическая деформация отсутствовала. Между тем инженерный опыт показывает, что почти всегда деформация сопровождает разрушение. При этом она съедает энергии в тысячу, а иногда и в десять тысяч раз больше той, которая требуется для компенсации поверхностного натяжения. Ясно, что в этих условиях поверхностное натяжение становится несущественным. Последователи Гриффитса, в первую очередь американский ученый Г. Р. Ирвин, решили, что и столь большая пластическая деформация не помеха для расчета тела с трещиной. Надо только считать, что она располагается лишь вблизи самого носика длинной трещины. Такие трещины получили название квазиупругих, или квазихрупких, то есть якобы хрупких. «Достоинство» их заключается в том, что, с одной стороны, к ним можно применить весь математический аппарат теории трещин – ведь зона пластичности крохотная в сравнении с длиной трещины; с другой – крохотная-то крохотная, а энергию упругого поля деформации понижает.

Используют это так. Прежде всего анализируют характер напряженного состояния в конструкции – к какой трещине оно приведет. Есть три вида трещины: нормального разрыва, поперечного сдвига и продольного сдвига. Первая из них возникает, когда разрывают лист бумаги. Чтобы объяснить второй, представьте себе, что два листа металла склепаны. Вы хотите это соединение разделить и молотом ударяете по верхнему слою, срезая заклепку. Дефект в заклепке и есть трещина сдвига. Трещина продольного сдвига образуется, когда, например, бумагу не разрывают, а режут ножницами. Для каждой давно рассчитаны поля напряжений вокруг их вершин (помните: «уши» трещины?). По мере приближения к вершине напряжения быстро растут и достигают предела, после которого материал начинает «течь», то есть пластически деформироваться. Эти условия так и называются пределом текучести. Протяженность области, где это происходит, легко рассчитать; с этого момента реальная длина трещины – это ее подлинная длина плюс размер пластически деформированной зоны. Вот теперь, когда известна и длина трещины, и напря-

жения в ее вершине, и потери энергии на деформирование, можно определить силу, необходимую для продвижения трещины. И конечно, ее легко сравнить с силой из опыта. Но еще важнее введение удивительной характеристики материала – вязкости разрушения. Эта величина, пропорциональная разрушающим напряжениям в вершине трещины, служит своеобразным рубежом прочности скомпрометированного трещиной металла. Ее легко вычислить для трещин различного вида практически в любых металлоконструкциях. Сопоставляя ее с напряжениями, действующими на деталь в том или ином процессе нагружения, заранее можно предсказать: выдержит ли нагрузку конструкция, содержащая трещину, или не выдержит. Все это можно сделать, испытывая не целую ступень космической ракеты, а лишь образец ее материала.

Сегодня – это один из основных методов исследования прочности потому, что любой реальный элемент металлоконструкции содержит множественные дефекты: и трещины, и надрезы, и отверстия, а испытать его целиком (скажем, ферму протяженностью в 50-100 м) физически невозможно. Да, к счастью, теперь и не нужно. Сотни лабораторий во всех странах мира, во всех отраслях машиностроения используют этот метод, хотя еще 20 лет назад казалось, что он не нужен.

Механики оказались правы и подарили цивилизации отличный инструмент для прогнозирования и оценки реальной прочности, который мы условно назовем «первичным диагнозом». Что имеется в виду? Произошла авария. Она может быть грандиозной – развалился корпус танкера в сто тысяч тонн водоизмещением и нефть залила обширный район моря. А может быть и скромной по своим масштабам, например во время больших холодов «разморозились» батареи и некоторые из них взорвались с разлетом осколков (бывает и такое). Специалист-механик, подобно врачу-терапевту, при первичном осмотре «больного», еще не располагая данными анализов, скажет примерно следующее. В первом случае при сварке корпуса танкера была проявлена небрежность, в результате которой швы получились с несплош-ностями. Эти непроверенные места явились концентраторами напряжений. Кроме того, жесткость корпуса танкера оказалась недостаточной и при сравнительно небольшом волнении на море он постоянно прогибался.

Со временем число этих циклов изгиба достигло критического значения – из концентраторов напряжений в сварных швах пошли трещины.

Может быть и иной вариант. При сварке в корпусе оказались законсервированными мощные остаточные напряжения и они «разрядились» на непроваре и т. д. Итак, первичный диагноз носит макроскопический характер и оперирует такими понятиями, как напряжения в конструкции, энергия, запасенная в ней, концентрация напряжений и т. д.

Из древнегреческой легенды мы знаем: когда-то персидский царь Ксеркс, взбешенный тем, что буря разрушила мост через Геллеспонт, приказал высечь море плетьми и заковать его в цепи. Будучи исследователем квалифицированным, современный инженер-механик не потребует наказания для моря, а начнет искать первопричину разрушения. С чего оно началось? Что произошло с атомами? Такие вопросы прежде всего поставит он перед собой. А ответить на них механику помогут другие исследователи – физики.








Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх