Загрузка...



И РАЗРУШАЯ, МОЖНО СОЗДАВАТЬ

И он дерзнул на все – вплоть до небес,

Но разрушенье – жажда созиданья.

И, разрушая, жаждал он чудес -

Божественный гармонии Созданья.

(И. Бунин)

Мы уже с вами, читатель, обсуждали, как быть с разрушением, которое нужно остановить. Речь шла о том, чтобы прежде всего обнаружить его с помощью чувствительных приборов, использующих «шумливость» трещины, например акустичесикх датчиков, способных воспринимать ее «пение» в акустическом диапазоне электрических или магнитных устройств, рассчитанных на определение электромагнитного излучения раскола и многих других. Полученные сигналы обрабатывались вычислительными устройствами и подавали команду на взрывы микрозарядов. Возникающие при этом упругие волны обрушивались на устье трещины и тормозили или разворачивали ее. Картина идеальная, но к сожалению, имеющая по меньшей мере один крупный недостаток. Дело в том, что появление трещины, даже на довольно ранних стадиях разрушения, обнаружить можно; но вот точно определить, где она находится и куда движется, совсем не просто.

Задача эта очень похожа на перехват современного сверхзвукового самолета. Радары дальнего обнаружения

засекают его достаточно далеко от цепи, затем передают радарам, расположенным в непосредственной близости от защищаемого объекта, а те в свою очередь наводят на самолеты противника истребители-перехватчики или зенитные ракеты ПВО.

Только с трещиной все обстоит гораздо сложнее. И вот почему. Вражеский самолет может быть «засечен» за тысячи километров от цели. Поэтому ПВО имеет, если не час, то во всяком случае десяток минут для подготовки отпора. В случае с трещиной все время разрушения может составлять сотые и тысячные доли секунды. А то и меньше. И за ничтожные временные промежутки нужно не только установить местонахождение трещины, но и определить направление и скорость ее движения. Если этого не знать, то удар импульса упругих волн окажется совсем бесполезным или придется на полости уже пробежавшей и завершившей разрушение трещины. А между тем он должен попасть точно «в скулу» трещины, в самую ее вершину. В этой игре с бегущей трещиной ставки очень высоки, а трудности совершенно необычайны и потому, что трещина может возникнуть в любом кристаллите практически мгновенно, и потому, что времени невероятно мало.

Времени настолько мало, что сегодня еще нет вычислительных устройств, способных обработать сигнал, приходящий с датчиков, следящих за трещиной. Поэтому абсолютно точно вычислить местонахождение быстрой трещины пока почти невозможно. Все осложняется еще тем, что разрушение иногда растет судорожными скачками и способно быстро менять направление. Поэтому нельзя что-нибудь прогнозировать. Движение самолета и «неторопливее», и плавнее.

Лучше обстоит дело с усталостной трещиной. Подрастает она медленно, разумно, скачками, следующими один за другим. Траектория ее не меняется, как в дурном сне. Поэтому американские физики применили простейшие методы триангуляции к трещинам, растущим в ядерном реакторе. Использовали они для этого акустическое «эхо». С помощью одновременного определения звукового излучения трещины тремя различно расположенными датчиками было найдено точное место нахождения очага усталостного разрушения. Интересно, что исследования проходили на большом удалении измерительной аппаратуры от самого реактора (до 90 м).

Ясно, что усталостное разрушение – наиболее заман-1 чивое и реальное приложение автоматических методов торможения трещин. Здесь в полном объеме могут быть использованы огромные возможности современной вычислительной техники – времени для этого достаточно, ведь скорости протекания процесса незначительны.

Поэтому, словами Ф. Петрарки, с высокой точностью

Отправив только что стрелу в полет, Стрелок искусный предсказать берется, Придется в цель она или не придется, Насколько точен был его расчет.

Но усталость – это лишь один из видов разрушения. И если в будущем мы и сумеем с ним справиться, то остается пока еще великое множество случаев, когда разрушающая трещина стремительна.

Что же делать тогда? Как определить, где она находится. А нельзя ли вообще этого не делать? Нет ли путей, которые позволили бы избежать этой процедуры?

Оказывается в некоторых простейших случаях такие пути есть. Допустим, что мы ориентировочно знаем хотя бы направление, по которому может побежать трещина. Тогда поперек этого направления, вдоль всей конструкции

выстраиваем своего рода забор – натягиваем и приклеиваем тончайшую проволочку, электрически изолированную от металла. Растущая трещина разрывает эту проволочку одновременно с металлом конструкции. И если по этому датчику был заранее пропущен слабый электрический ток, можно получить сигнал о местонахождении трещины в данный момент. Но этот метод далеко не всегда удобен и потому, что дает лишь одну координату трещины, и потому, что очень трудно так приклеить проволочку к металлу, чтобы разрушались они абсолютно одновременно. Обычно проволочка запаздывает и рвется после прохождения трещины уже тогда, когда вершина давно ушла вперед и берега раздвигаются.

Выходит, что лоцирование разрушения – наиболее трудная задача во всей проблеме: ее надо либо решать немедленно, либо обходить. Помня студенческую поговорку, что «умный в гору не пойдет», попробуем отыскать боковую тропку. Начнем издалека.

Проводится периодический осмотр ферм большого моста. На одной из стальных балок обнаружена трещина.

Ее опасность понимают и поэты. Недаром А. Межи-ров пишет:

Если выбьет заглушку-пустяк, Хуже – если на корпусе – трещина.

Что прежде всего делает ремонтная бригада? Высверливает в устье трещины отверстие. Зачем? Чтобы снизить концентрацию напряжений и приостановить разрушение. Спустя некоторое время, эту трещину заварят совсем, да еще сверх того на поврежденное сечение положат «заплатку» из стали.

Так, что же, – для борьбы использовать простую дрель – высверлить вершину закритической трещины?

Но всякому здравому человеку ясно, что не сыскать такого Левшу, который изловчился бы сделать это за микросекунду – другую. К тому же, и в считанные микросекунды трещина не стоит на месте, а умудряется пробежать путь длиной от нескольких миллиметров до сантиметра. Ясно, что никакими традиционными механическими способами обезглавить или даже «подстричь» трещину не удается.

И все-таки, это возможно, но совершенно иными средствами. Предположим, что мы располагаем методом, с помощью которого можем нагреть устье трещины. Тогда материал в окрестностях вершины должен

расшириться. Но окружающая матрица металла воспрепятствует этому. Иначе говоря, очаг, в котором разрываются межатомные связи, окажется сжатым тем больше, чем выше температура нагрева и значительнее перепад между нею и температурой окружающего пространства. Понятно, каким образом возникающие термические напряжения повлияют на разрушение: они станут мощно его тормозить.

Но здесь человек может достичь и большего. Допустим, мы не остановились на достигнутом, а продолжаем нагревать металл и доводим участок при вершине трещины до температуры плавления. Жидкий металл вытечет, в устье образуется отверстие. Упирающаяся в него трещина будет надежно остановлена. Во-первых, потому, что напряжения по контуру отверстия в сотни раз меньше, чем на трещине. Во-вторых, поверхность его раскалена, следовательно, сжата окружающим холодным металлом.

А как осуществляется все это на деле? Нам, к примеру, нужно предохранить от катастрофы большой лист металла, растянутый какими-то совершенно произвольными силами. Поставим неподалеку батарею конденсаторов большой емкости. В ней запасен значительный электрический заряд. Посредством быстродействующего

включателя подключим батарею к защищаемому металлу.

Другим элементом антиаварийной системы служит рецептор – датчик, внимательно «прислушивающийся», не появится ли трещина. Он может быть любым, в частности звуковым. Здесь, однако, пришлось бы потребовать от него быть глухим ко всем звукам, кроме тех, которые издает трещина. В этом ему можно помочь. Любые случайные возбуждения, как правило, имеют низкочастотный спектр – слышимый. Другое дело трещина – она «работает» в неслышимой, ультразвуковой области. Вот и надо научить датчик реагировать только на ультразвук, а на остальные не обращать внимания.

Но это лишь один из принципов датчика. Имеет он и другой, не менее важный, который можно выразить латинским изречением: «Зетрег рагахиз», что значит «всегда готов». Датчик все время должен находиться в состоянии «боевой готовности», как радары, управляющие самолетами-перехватчиками и ракетами ПВО. Металл служит, спокойно «несет свой крест» – датчик настороже. И так все время, пока работает конструкция – и днем, и ночью, и в холод, и в жару.

Но вот «Смерть проснулась около полудня». Появилась и побежала в металле трещина. Вечно бодрствующий рецептор только этого и ждал – он сразу же услышал ее и подал сигнал включателю, отделяющему электрический заряд конденсаторов от конструкции. Тот немедленно открылся, и поток электрической энергии в виде короткого электрического импульса большой мощности хлынул в защищаемый металлический лист.

И тут проявились удивительные качества высокочастотного электрического тока. Он стремится распространяться не по массиву металла, а по тонкому поверхностному его слою. Это явление так и называют скин-эффект1. Импульсу этому не надо знать, где находится трещина, – он ее сам мгновенно обнаружит. Ни к чему ему и сведения о скорости разрушения – все равно скорость эта ничтожна в сравнении с быстротой распространения электромагнитного сигнала или света. Словно бы широкая сеть поиска накинута на конструкцию. Мгновенно сосредоточивает она на трещине едва ли не всю энергию разряжающегося конденсатора. Дело прежде

1 5кт – кожа, шкура (англ.).

всего в том, что трещина – это поверхность. Но не менее важно, что она рассекает живое сечение металла, по которому течет высокочастотный ток. Он обтекает трещину сначала по одной ее стороне, затем ныряет в острую вершину, потом бежит по другому берегу. Самое интересное происходит в острие трещины. Радиус быстрого разрушения ничтожен и плотность тока «всплескивается» до огромных значений, причем тем больших, чем более хрупким и опасным было разрушение. Огромный ток выделяет в крохотном пространстве устья трещины титаническое количество джоулева тепла. Металл за считанные микросекунды разогревается, расплавляется и испаряется. Из вершины трещины буквально фонтанирует поток вещества – от частичек и капелек металла до плазмы; острейшая вершина превращается в оплавленное по краям отверстие в доли миллиметра и целые миллиметры. Получается совсем как в персидской пословице: «Вы покажите нам отверстие, а мы из него сделаем ворота». Эти-то ворота – непреодолимый барьер на пути трещины. Прорваться сквозь них она не в состоянии. Таким образом, разрушение безнадежно проигрывает безжалостному термическому разгрому, как это ни странно, несущему металлической конструкции добро. Совсем как у М. Волошина

И зло в тесноте сражений Побеждается горшим злом.

Счастливое отличие этого метода от других способов торможения трещины заключается в том, что металл с остановленной трещиной может служить долго. Причина в том, что возникшее отверстие полностью парализует любые попытки трещины подрасти. Тем более что не составляет труда сделать это «сверление» каким угодно большим.

И жизни ключ взыграл из разрушенья…

И.-В. Гете








Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх