Загрузка...



12

Эра изобилия

Исходными материалами для цивилизации, так же как и для самой жизни, служат вещество и энергия, которые, как известно, являются двумя сторонами одной медали. На протяжении большей части истории человечества и всего доисторического периода человек потреблял очень мало и вещества, и энергии. Наш отдаленный предок расходовал за год примерно четверть тонны пищи, полтонны воды, а также самую малость шкур, палок, камней и глины. Источником энергии ему служили собственные мускулы, да еще изредка, от случая к случаю, лесные пожары.

С развитием техники эта примитивная картина изменилась неузнаваемо. Средний американец потребляет в год более полтонны стали, семь тонн угля и сотни килограммов металлов и химикатов, самое существование которых еще сто лет назад было неизвестно науке. Чтобы обеспечить одного современного человека предметами первой необходимости — и предметами роскоши, — каждый год из земли извлекаются более двадцати тонн сырья. Не удивительно, что время от времени мы слышим предупреждения о недостатке того или иного вида сырья, о том, что через несколько поколений медь или свинец станут редкими металлами.

Большинство из нас обращают мало внимания на эти тревожные голоса, потому что мы слышали их и раньше, — и ничего не произошло. Неожиданное открытие гигантских запасов нефти на Среднем Востоке на время утихомирило кассандр нефтяной промышленности, которые предсказывали, что к концу этого столетия мы останемся без бензина. На этот раз они ошиблись, но в несколько более отдаленном будущем они окажутся правы.

Какие бы новые запасы ни были открыты таких ископаемых видов топлив, как уголь и нефть, может хватить еще лишь на несколько столетий; затем они иссякнут уже навсегда. Предоставив человеку легкодоступные источники энергии, они помогли созданию современной технической цивилизации, но питать ее на протяжении тысячелетий они не смогут. Для этой цели нам нужны более постоянные источники энергии.

Сегодня мало кто сомневается в том, что долгосрочное (а может быть, и ближайшее) решение топливной проблемы кроется в ядерной энергии. Ядерное оружие, накопленное ныне великими державами, могло бы приводить в движение все машины земного шара на протяжении нескольких лет, если бы его энергию можно было использовать для целей созидания. Ядерные боеголовки, хранящиеся в арсеналах одних только США, энергетически эквивалентны миллиардам тонн нефти или угля.

Мало вероятно, что реакции деления ядер таких тяжелых элементов, как торий, уран, плутоний, будут играть сколько-нибудь длительную роль в наших земных делах. Надо надеяться, что этого не произойдет, ибо деление ядер — это самый грязный и самый неприятный способ высвобождения энергии из всех, когда-либо открытых человеком. Некоторые из радиоактивных изотопов, получаемых в современных реакторах, будут причинять неприятности, а может быть, и физический ущерб беспечным археологам и через тысячу лет.

Но, кроме реакции деления, нам известна реакция синтеза — слияния ядер таких легких элементов, как водород и литий. Именно эта реакция движет жизнью звезд. Мы уже воспроизвели эту реакцию в земных условиях, но пока еще не укротили ее. Когда мы этого добьемся, проблема получения энергии будет решена навсегда, притом без ядовитых радиоактивных отходов — оставаться будет только чистая гелиевая «зола».

Управляемый ядерный синтез — первейшая задача прикладной ядерной физики; некоторые ученые считают, что она будет решена через десяток лет, другие полагают, что лет через пятьдесят. Но почти все они убеждены, что энергия ядерного синтеза поступит в наше распоряжение задолго до того, как иссякнут запасы нефти и угля. Тогда мы сможем черпать топливо из мирового океана практически в неограниченных количествах.

Очень может быть, — во всяком случае, сейчас это представляется весьма вероятным, — что энергостанции ядерного синтеза можно будет строить только очень большой мощности, и для обеспечения энергией целой страны потребуется всего несколько таких станций. Возможность создания малых передвижных станций ядерного синтеза и применения их, например, в качестве двигателей в транспортных машинах крайне невелика. Основным назначением станций ядерного синтеза будет производство тепловой и электрической энергии в колоссальных масштабах, так что нам придется еще решать проблему доставки этой энергии к миллионам потребителей. Существующие энергосистемы могут снабжать наши дома, но что будет с автомобилями и самолетами в надвигающейся новой эре, когда иссякнут запасы нефти?

Наиболее желательное решение этой проблемы — создание устройств для хранения электрической энергии, по меньшей мере в десять, а еще лучше — в сто раз более компактных, чем громоздкие и грязные батареи, которые, по существу, остались такими же, какими они были во времена юного Томаса Эдисона. О неотложной необходимости решения этой проблемы уже говорилось в третьей главе в связи с электромобилями, однако существует бесчисленное множество других областей спроса на портативные аккумуляторы энергии. Может быть, форсированное развитие космической техники приведет нас в недалеком будущем к созданию легких энергетических элементов, дающих столько же энергии на килограмм веса, сколько дает бензин; в сравнении с некоторыми другими чудесами современной техники это пожелание покажется достаточно скромным.

Есть еще одна идея, которую гораздо труднее осуществить: передавать энергию от центральной электростанции без проводов и принимать ее в любой точке Земли с помощью устройств, сходных с радиоприемными. В ограниченных масштабах это уже возможно, правда, ценой больших затрат сил и средств.

Мы умеем создавать остронаправленные лучи, несущие непрерывный поток энергии мощностью до тысячи лошадиных сил; часть этой энергии может быть уловлена на расстоянии в несколько километров посредством больших антенных систем. Однако вследствие неизбежного рассеивания луча большая часть энергии будет теряться, поэтому коэффициент полезного действия такой системы будет очень низким. Это все равно что освещать дом прожектором с расстояния в пятнадцать километров — большая часть света попросту рассеялась бы по окружающей местности. Впрочем, это не совсем одно и то же: при высокой мощности, передаваемой по лучу, рассеянная энергия принесла бы не только убыток, но и серьезную опасность для людей, как это уже установили создатели радиолокационных станций дальнего обнаружения.

Другое существенное возражение против беспроводной передачи энергии состоит в том, что передатчики должны посылать в пространство неизменное количество энергии, независимо от того, будет ли она использоваться потребителями или нет. В современных распределительных системах центральная электростанция не дает тока, пока мы не затребуем его, включив тот или иной электроприбор; таким образом, существует «обратная связь» потребляющих устройств с генератором. Осуществить такую связь в беспроводной передаче энергии хотя и возможно, но исключительно трудно.

Поэтому передача энергии с помощью направленного излучения практически нецелесообразна, если не считать некоторых очень узко специальных областей применения. Она может, в частности, оказаться полезной для передачи энергии с искусственных спутников Земли на космические корабли, если они достаточно сблизятся и будут неподвижны один относительно другого. Но, конечно, нет никакой надежды использовать этот способ для снабжения энергией кораблей в полете, хотя он наиболее необходим именно в этом случае.

Для беспроводной передачи энергии, если ее когда-нибудь удастся осуществить, потребуется применить какие-то новые, пока еще неизвестные нам принципы или технические средства. К счастью, такая передача не составляет для нас предмета первейшей необходимости — она просто пригодилась бы нам. Если нужно, мы можем обойтись и без нее.

В порядке чисто отвлеченных рассуждений следует упомянуть, что в окружающем нас космическом пространстве, может быть, и существуют другие источники энергии; когда-нибудь мы, возможно, сумеем воспользоваться ими. Некоторые такие источники уже известны нам, но все они либо крайне маломощны, либо трудно поддаются практическому использованию в силу своих коренных природных особенностей. Самый мощный из этих источников — излучение Солнца, то есть солнечный свет. Мы уже используем этот источник для снабжения энергией наших космических летательных аппаратов. Мощность водородного реактора Солнца выражается гигантским числом — около 500 000 000 000 000 000 000 000 лошадиных сил; однако поток энергии, доходящей до Земли, сильно ослаблен огромным расстоянием. На уровне моря количество солнечной энергии, получаемой земной поверхностью, соответствует примерно 1,2 лошадиной силы на один квадратный метр. Эта величина, разумеется, грубо приближенная, но зато удобная для запоминания. Значение ее, конечно, колеблется в широких пределах в зависимости от атмосферных условий. Пока что мы научились превращать в электричество всего лишь десятую часть этой энергии, при этом капитальные затраты на 1 лошадиную силу, получаемую с помощью современных солнечных батарей, составляет примерно 100 000 долларов! Таким образом, для энергопитания стосильного автомобиля понадобилась бы поверхность сбора солнечных лучей площадью около восьмисот квадратных метров — даже в яркий солнечный день. Практическая ценность подобного предложения явно невелика.

Нам не удастся с выгодой использовать поток солнечной энергии, если мы не придвинемся намного ближе к Солнцу; даже на Меркурии мы смогли бы получать с квадратного метра поверхности, собирающей излучение, электрическую мощность всего лишь немногим больше одной лошадиной силы. Возможно, когда-нибудь мы сумеем разместить «ловушки» солнечного света в непосредственной близости от Солнца[33] и передавать полученную энергию по направленному лучу туда, куда нужно. Если энергия ядерного синтеза останется недоступной, нам придется пойти даже на такие крайние меры. Но космическим кораблям следует избегать подобных «силовых» лучей: они будут весьма эффективными «лучами смерти».

Все другие известные источники энергии в миллионы раз слабее солнечного света. Космические лучи, например, несут приблизительно столько же энергии, сколько свет звезд. Лунный свет и то выгоднее как источник питания двигателя, чем космическое излучение. Это может показаться парадоксальным с учетом того факта, что космические лучи часто обладают огромной энергией и могут причинять тяжелые повреждения живым организмам. Но дело в той, что лучи (точнее, частицы) высоких энергий столь немногочисленны и редки, что средняя мощность космических излучений пренебрежимо мала. Если бы это было не так, нас не было бы на Земле.

В качестве потенциальных источников энергии иногда упоминаются гравитационное и магнитное поля Земли, однако возможность их использования весьма ограниченна. Извлечь энергию из гравитационного поля можно только за счет падения сквозь него какого-либо тяжелого предмета, заранее помещенного на соответствующую высоту. Правда, именно на этом принципе основана работа гидроэлектростанций, которые, в сущности, косвенным образом используют солнечную энергию. Солнце, испаряя воду с поверхности океанов, создает горные озера, гравитационную энергию которых мы черпаем с помощью турбин.

Но гидроэлектростанции никогда не покроют больше нескольких процентов общей потребности человечества в энергии, даже если, избави боже, все водопады нашей планеты будут загнаны в туннели, подводящие воду к турбинам электростанций. Другие же методы использования гравитационной энергии потребовали бы перемещения колоссальных количеств вещества, например выравнивания гор. Если человечество когда-нибудь и возьмется за осуществление подобных проектов, то для совершенно иных целей, чем производство энергии, и такие операции в конечном итоге принесут нам не выигрыш, а потери в энергетическом балансе. Ведь, прежде чем снести гору, ее нужно сначала раздробить на куски!

Магнитное поле Земли настолько слабо, что не заслуживает рассмотрения. Игрушечный магнит в тысячи раз сильнее. Время от времени можно слышать оптимистические прогнозы относительно «магнитного двигателя» для космических кораблей, но этот проект можно сравнить разве что с намерением покинуть Землю по лестнице из паутины. Сила магнитного поля Земли сопоставима с прочностью паутинок, летающих в воздухе в погожие осенние дни.

Однако столь многое во Вселенной еще недоступно для наших органов чувств, и так много видов энергии было открыто на протяжении лишь нескольких последних мгновений истории человечества, что было бы крайне неосмотрительным отвергать мысль о наличии космических сил, пока еще не известных нам. Всего лишь поколение назад ядерная энергия казалась нелепой выдумкой, а когда наконец было доказано, что она существует, большинство ученых отрицали какую бы то ни было возможность ее практического использования. Имеются убедительные данные о том, что все звезды и планеты пронизывает насквозь поток энергии в форме нейтринного излучения (более подробно об этом говорится в главе 9), но уловить его до сих пор практически не удалось ни одним из наших методов наблюдения. Примерно так же Ньютон при всей своей гениальности не смог бы обнаружить, скажем, излучение, испускаемое радиоантенной.

Для земных целей не так уж важно, имеются ли во Вселенной какие-либо до сих пор неизвестные и неиспользуемые источники энергии. Океанских запасов тяжелого водорода хватит, чтобы приводить в движение все наши машины и обогревать все наши города на неисчислимые века. И если спустя два поколения мы будем испытывать энергетический голод (что вполне возможно), то только благодаря нашему собственному невежеству. Мы уподобимся тогда жителю каменного века, погибающему от холода на пласте угля.


По поводу использования большинства сырьевых запасов и энергетических ресурсов можно сказать, что мы проживаем основной капитал. Мы занимаемся использованием легкодоступных запасов — высококачественных руд, богатых залежей, в которых природа сконцентрировала нужные нам металлы и минералы. Процесс образования руд длился больше миллиарда лет. Мы же за несколько столетий разграбили сокровища, которые накапливались на протяжении многих геологических эпох. Когда все эти сокровища иссякнут, цивилизация не сможет несколько сот миллионов лет топтаться на месте и ждать, пока они восстановятся.

И тут нам опять придется напрячь разум, а не мускулы. Как отмечал Гаррисон Браун в своей книге «Вызов будущего», после истощения всех рудных запасов мы сможем обратиться к обычным горным породам и глинам:

«В сотне тонн обычной магматической горной породы, например гранита, содержится в среднем 8 тонн алюминия, 5 тонн железа, 540 килограммов титана, 80 — марганца, 30 — хрома, 18 — никеля, 14 — ванадия, 9 — меди, 4,5 — вольфрама и 1,8 килограмма свинца».

Извлечение всех этих элементов потребует не только усовершенствованной химической технологии, но и больших затрат энергии. Породу вначале придется дробить, а затем обрабатывать посредством нагревания, электролиза и другими методами. Однако, как указывает далее Гаррисон Браун, в тонне гранита содержится количество урана и тория, энергетически эквивалентное пятидесяти тоннам угля. Таким образом, вся энергия, которая понадобится для переработки горной породы, заключена в ней самой.

Другой, почти неисчерпаемый источник основных видов сырья — океан. В одном кубическом километре морской воды находится во взвешенном состоянии или растворено около 37,5 миллиона тонн твердого вещества. Большую часть его (30 миллионов тонн) составляет обычная поваренная соль, но в остальных 7,5 миллионах тонн содержатся почти все элементы, притом во внушительных количествах. Из них больше всего магния (около 4,5 миллиона тонн). Извлечение магния из морской воды, налаженное в промышленных масштабах во время второй мировой войны, было великой победой химической технологии, имевшей очень большое значение. Однако магний уже не первый элемент, извлекаемый из морской воды: промышленная добыча брома началась еще в 1924 году.

Трудности разработки океанских «недр» состоят в том, что вещества, которые мы хотим добыть из воды, находятся в ней в очень небольших концентрациях; 4,5 миллиона тонн магния, которые, как мы упоминали, содержатся в одном кубическом километре, — это гигантское количество; при современном уровне потребления его хватило бы миру больше чем на сто лет. Но это количество магния рассеяно в миллиарде тонн воды. Таким образом, морская вода, если рассматривать ее как руду, содержит всего 0,45 % магния. В обычных условиях редко бывает выгодно разрабатывать руды, содержащие менее одного процента неблагородных металлов. Многих людей буквально гипнотизирует тот факт, что в кубическом километре морской воды содержится около пяти тонн золота, хотя в своих собственных огородах они, пожалуй, обнаружили бы более высокое содержание этого металла.

Тем не менее крупные успехи химической технологии, достигнутые в последние годы — особенно в ходе выполнения программы по атомной энергии, где потребовалось извлекать очень небольшие количества изотопов из больших масс других материалов, — позволяют надеяться, что мы сумеем приступить к разработке морской «руды» задолго до того, как истощатся сырьевые запасы на суше. И в данном случае решение проблемы упирается в основном в энергию; энергия нужна для перекачки воды, для ее испарения, для электролиза. Успех может прийти в ходе решения комплексной проблемы: во многих странах ведутся работы по опреснению морской воды; получаемый при этом побочный продукт — обогащенный рассол, возможно, и послужит сырьем для перерабатывающих установок.

Воображение рисует гигантские универсальные заводы, возникшие, быть может еще до конца текущего столетия и использующие дешевую энергию термоядерных реакторов; они будут извлекать из моря пресную воду, поваренную соль, магний, бром, стронций, рубидий, медь и многие другие металлы. Примечательным исключением из этого перечня является железо, которым океаны несравненно беднее, нежели континенты.

Если кому-нибудь добыча полезных ископаемых из моря покажется утопическим проектом, то стоит напомнить, что мы уже более пятидесяти лет занимаемся разработкой богатств атмосферы. Одним из серьезных, но ныне забытых поводов для беспокойства в XIX веке была надвигавшаяся нехватка азотистых соединений для производства удобрений. Природные запасы иссякали, и нужно было найти метод «связывания» азота воздуха. В атмосфере содержится примерно 4000 триллионов тонн азота; иначе говоря, на каждого жителя Земли приходится более чем по миллиону тонн. Если бы этот азот удалось использовать, страхи по поводу грядущего истощения запасов азота отпали бы навсегда.

Это было достигнуто в самом начале нынешнего столетия, притом несколькими способами. Один из процессов предусматривал «сжигание» атмосферного воздуха в пламени мощной электрической дуги, поскольку при очень высокой температуре азот атмосферы вступает в реакцию с кислородом. Вот пример того, что можно сделать, располагая дешевой энергией (кстати, норвежцы стали пионерами в применении этого процесса благодаря тому, что они занимали в то время ведущее место по производству гидроэлектроэнергии). Пожалуй, этот пример может служить указанием и на будущее.

Широкое использование источников концентрированной энергии в горнодобывающей промышленности еще только-только началось, но, как упоминалось в главе 9, русские в порядке эксперимента уже применяют высокочастотные электрические разряды и термическое бурение для разрушения твердых горных пород, не поддающихся разработке другими методами. И в конечном счете, разумеется, можно рассчитывать на применение ядерных взрывов для выемки пород в больших масштабах, если при этом удастся избежать радиоактивного загрязнения.

Когда подумаешь, что самые глубокие шахты (едва перешагнувшие теперь за отметку 2000 метров) представляют собой всего лишь булавочные уколы на поверхности нашей планеты, диаметр которой достигает почти 13 тысяч километров, то станет ясно, что говорить о коренной нехватке любого элемента или минерала просто бессмысленно. В 10–15 километрах под нами лежат все виды полезных ископаемых, какие только могут нам понадобиться. И нам не придется самим добираться до них. Использование людей для подземной разработки полезных ископаемых постепенно — и более чем своевременно — сокращается. Зато машины смогут отлично работать при температурах в несколько сот градусов и давлениях в десятки атмосфер. Именно так и будут работать на глубинах в несколько километров от дневной поверхности роботы-кроты недалекого будущего.

Конечно, разрабатывать существующими методами пласты, залегающие на глубине нескольких километров, чересчур сложно и дорого. А раз так, мы должны открыть совершенно новые способы, как это уже сделано в добыче нефти и серы. Прямая необходимость да к тому же и научная любознательность вынудят нас заняться теми проектами, которые уже описаны мной в главе 9.

Теперь давайте несколько расширим наши горизонты. До сих пор мы рассматривали в качестве источника полезных ископаемых только нашу планету. Но Земля ведь содержит всего лишь около трех миллионных долей общей массы вещества солнечной системы. Правда, более чем 99,9 процента этого вещества приходится на долю Солнца, откуда, на первый взгляд, извлечь его невозможно. Однако суммарная масса планет, их спутников и астероидов в четыреста пятьдесят раз превышает массу Земли. Хотя наибольшая часть этой массы сосредоточена в Юпитере (318 земных масс), но доля Сатурна, Урана и Нептуна также достаточно внушительна (соответственно 95, 15 и 17 земных масс).

Учитывая современную астрономическую стоимость космического полета (доставка каждого килограмма полезного груза даже на ближайшую околоземную орбиту обходится в несколько тысяч долларов), предположение о том, что мы когда-нибудь сможем добывать где-то на другом краю солнечной системы и перевозить оттуда миллионы тонн полезных ископаемых, может показаться чистой фантастикой. Даже перевозка золота вряд ли окупилась бы; выгодно было бы перевозить лишь алмазы.

Однако такая точка зрения несет на себе печать современного примитивного уровня космонавтики, обусловленного крайне низкой эффективностью ее средств. Не очень-то приятно сознавать это, но ведь если бы мы умели действительно эффективно использовать энергию, то на отправку одного фунта полезного груза в космос с полным отрывом от Земли нам потребовалось бы затратить всего 25 центов на химическое горючее, а доставка его с Луны на Землю обошлась бы всего в 1–2 цента. По ряду причин эти цифры представляют собой недостижимый идеал, но они показывают, сколь огромен простор для усовершенствований. Некоторые исследования в области ядерных двигателей дают основания полагать, что даже в рамках предвидимого развития техники космический полет будет стоить не дороже полета на реактивном самолете, а перевозка грузов обойдется намного дешевле.

Займемся сначала Луной. Пока мы еще ничего не знаем о ее минеральных ресурсах, однако они должны быть колоссальны, а в некоторой части ее богатства могут оказаться уникальными. Поскольку Луна лишена атмосферы и обладает сравнительно слабым гравитационным полем, то вещество с поверхности Луны можно было бы метать «вниз» на Землю с помощью электрокатапульт или пусковых рельсовых установок. Ракетного топлива на это не потребуется — достаточно будет потратить несколько центов на электроэнергию, чтобы отправить килограмм полезного груза. Капитальные затраты на метательную установку будут, конечно, очень велики, но они окупятся многократным использованием.

Таким образом, если на Луне начнутся крупные промышленные разработки, представляется теоретически возможным переправлять добытые там материалы на Землю большими партиями на борту грузовых кораблей-роботов. Такие корабли смогут приземляться на заранее подготовленные посадочные площадки, предварительно погасив в верхних слоях атмосферы огромную скорость, с какой они возвращаются к Земле (около 40 000 километров в час). Расход ракетного топлива при этом будет очень невелик — только на ориентацию корабля и управление им на участке спуска главным источником энергии будет стационарная силовая станция метательной установки, построенной на Луне.

Углубимся дальше в космическое пространство. Мы знаем, что в солнечной системе рассеяно колоссальное количество металла, в том числе много превосходного никеля и железа в виде метеоритов и астероидов. Самый крупный из астероидов, Церера, имеет диаметр, равный 720 километрам, а астероидов с поперечником более полутора километров, возможно, существуют тысячи. Интересно отметить, что одного железного астероида диаметром в 270 метров вполне хватило бы для удовлетворения годовой потребности мира.

Астероиды как источники сырья особенно привлекательны тем, что их гравитационные поля крайне слабы. Чтобы покинуть астероид, практически почти не нужно затрачивать энергию; с небольшого астероида человек легко может оторваться прыжком. Когда ядерные ракетные двигатели будут усовершенствованы, возможно, окажется целесообразным сталкивать астероиды (пусть самые маленькие) с их орбит и переводить на такие траектории, которые приведут их, скажем, через год в непосредственное соседство с Землей. Здесь они будут задержаны на околоземной орбите, пока их не раздробят на куски подходящих размеров; возможно и другое решение — целиком сбрасывать астероиды на Землю.

Эта последняя операция почти не потребует затрат топлива, ибо всю работу выполнит гравитационное поле Земли. Однако она потребует исключительно точного и абсолютно надежного наведения, так как последствия ошибки могут быть настолько ужасны, что лучше об этом не думать. Даже очень маленький астероид способен стереть с лица Земли большой город, а падение астероида, содержащего годовой запас железа для всей планеты, было бы эквивалентно взрыву мощностью в 10 000 мегатонн. При его падении образовалась бы воронка по меньшей мере в десять раз больше Аризонского кратера. Поэтому, пожалуй, лучше будет использовать в качестве разгрузочной площадки не Землю, а Луну.

Если когда-нибудь человечество найдет способы управления гравитационными полями (эта проблема обсуждалась в главе 5), то подобные космические инженерные мероприятия станут гораздо более приятным. Тогда нам, возможно, удастся аккумулировать колоссальную энергию падающего астероида и использовать ее так, как мы используем сегодня энергию падающей воды. Эта энергия будет, так сказать, добавочной премией в дополнение к целой горе железа, которую мы плавно опустим на Землю. Правда, эта идея представляет собой пока что чистейший вымысел, однако нам не следует отбрасывать ни одного проекта, если в нем соблюдается закон сохранения энергии.

Отправка материалов с поверхности планет-гигантов — гораздо менее привлекательное предложение, чем разработка астероидов. Мощные гравитационные поля сделают решение задачи трудным и дорогостоящим даже при наличии неограниченных ресурсов термоядерной энергии, а без такой предпосылки этот замысел вообще бессмысленно обсуждать. К тому же планеты типа Юпитера, по-видимому, почти исключительно состоят из малоценных легких элементов, таких, как водород, гелий, углерод и азот; все более тяжелые элементы заключены в ядрах этих планет, на глубинах, измеряемых тысячами километров.

Аналогичные соображения в еще большей степени относятся и к Солнцу. Однако в данном случае есть одно благоприятное обстоятельство, которым когда-нибудь, возможно, удастся воспользоваться. Вещество Солнца находится в плазменном состоянии, иначе говоря, оно нагрето до такой высокой температуры, что все его атомы ионизированы. Плазма проводит электрический ток гораздо лучше, чем любой металл; управление ею с помощью магнитных полей составляет основу новой науки, имеющей очень важное значение — магнитогидродинамики, сокращенно именуемой МГД (см. главу 9). Ныне мы используем различные магнитогидродинамические методы в научно-исследовательской работе и промышленности для получения и удержания плазмы при температурах, достигающих миллионов градусов. Аналогичные процессы можно наблюдать на Солнце, где магнитные поля вокруг солнечных пятен и вспышек настолько интенсивны, что они выбрасывают облака газа размером с земной шар на высоту в тысячи километров, легко преодолевая солнечную гравитацию.

Питание энергией непосредственно от Солнца может показаться фантастическим предложением, но ведь мы уже исследуем его атмосферу радиолучами. Может быть, придет день, когда мы научимся высвобождать титанические силы, действующие на Солнце, и отбирать из его раскаленного вещества то, что нам нужно. Однако, прежде чем браться за такой прометеев подвиг, будет разумно яснее представить себе его возможные последствия.


Совершив мысленно набег на солнечную систему в поисках сырьевых ресурсов, возвратимся вновь на Землю и направим свои помыслы в совершенно иную сторону. Возможно, нам никогда и не понадобится выходить за пределы нашей планеты в поисках того, что нам нужно, потому что настанет время, когда мы научимся создавать любой элемент в любых количествах посредством ядерных превращений.

До открытия деления ядер урана в 1939 году превращение одних элементов в другие оставалось такой же мечтой, как и во времена алхимиков. С тех пор как в 1942 году начали действовать первые реакторы, было произведено значительное, измеряемое тоннами, количество синтетического элемента плутония; кроме того, в огромных количествах были получены другие элементы как побочные продукты, притом зачастую нежелательные и причиняющие много хлопот своей радиоактивностью.

Но плутоний, имеющий важнейшее военное применение, представляет собой совершенно особый случай; всем известна дороговизна и сложность установок, необходимых для его получения. Золото по сравнению с ним куда дешевле, а применение синтеза для производства черных и цветных металлов — свинца, меди или железа — представляется ныне не более вероятным, чем добыча их на Солнце.

Надо помнить, однако, что ядерная техника находится сейчас примерно на той же стадии развития, что и химическая технология в начале девятнадцатого столетия, когда еще только начинали понимать законы, управляющие ходом химических реакций. Сейчас мы синтезируем в промышленных масштабах медицинские препараты, пластические массы, которые химики совсем недавно не смогли бы получить даже в своих лабораториях. А через несколько поколений мы, безусловно, научимся проделывать то же самое и с элементами.

Начав с простейшего элемента — водорода (один электрон вращается вокруг одного протона) или его изотопа — дейтерия (один электрон вращается вокруг ядра, состоящего из протона и нейтрона), мы можем «сплавлять» атом с атомом и получать все более и более тяжелые элементы. Именно такой процесс происходит на Солнце, а также при взрыве водородной бомбы: с помощью различных средств достигается соединение четырех атомов водорода в один атом гелия, причем в ходе этой реакции высвобождается колоссальное количество энергии. (На практике используется также и третий элемент периодической таблицы — литий.) Возбудить этот процесс исключительно трудно, управлять им еще труднее, однако это только самый первый шаг в области, которую можно назвать «ядерной химией».

При давлениях и температурах еще более высоких, чем те, что возникают при сегодняшних термоядерных взрывах или в установках для термоядерного синтеза, атомы гелия в свою очередь будут соединяться, образуя более тяжелые элементы; именно это и происходит в недрах звезд. Вначале такие реакции идут с выделением энергии, но на стадии синтеза более тяжелых элементов, начиная с железа и никеля, энергетический баланс изменяется и создание подобных элементов уже требует затрат дополнительной энергии. Дело в том, что наиболее тяжелые элементы склонны к неустойчивости и их ядра легче делятся, нежели сливаются. Образование элементов можно, пожалуй, уподобить сооружению колонны из кирпичей: вначале конструкция устойчива, но по мере роста приобретает склонность к самопроизвольному разрушению.

Это, разумеется, очень поверхностное рассмотрение ядерного синтеза; подробное описание процессов, происходящих внутри звезд, можно найти в книге профессора Хойла «Границы астрономии». Вы прочтете там, что температура звездных недр достигает одного — пяти миллиардов градусов, а давление — миллионов миллиардов атмосфер, из чего явствует, что такой путь решения проблемы вряд ли особенно перспективен.

Но есть другие способы вызывать реакции, кроме нагрева и сжатия. Химики знают их уже многие годы; они применяют катализаторы, которые ускоряют протекание реакций или позволяют осуществлять их при гораздо более низких температурах, нежели в обычных условиях. Большая часть современных химических производств (например, перегонка нефти) основана на использовании катализаторов. Точный состав катализаторов часто является тщательно охраняемым фирменным секретом.

Существуют ли ядерные катализаторы, подобно химическим? Да, на Солнце именно такую роль играют углерод и азот. Могут существовать и другие ядерные катализаторы, причем не обязательно простые элементы. Среди легионов частиц, ошибочно называемых элементарными, которые сейчас ставят физиков в тупик, — мезонов, позитронов и нейтрино, — могут оказаться такие, которые способны вызывать реакцию синтеза при реально достижимых температурах и давлениях. А может быть, есть и совершенно иные пути к осуществлению ядерного синтеза, столь же невообразимые сегодня, как и урановый реактор тридцать лет назад.

В наших морях содержится 100 000 000 000 000 000 тонн водорода и 20 000 000 000 000 тонн дейтерия. Скоро мы научимся использовать эти простейшие элементы для получения энергии в неограниченных количествах. Позже — вероятно, намного позже — мы сделаем следующий шаг и начнем громоздить ядерные «кирпичики» один на другой, создавая, таким образом, любой нужный нам элемент. И если, наступит такое время, когда золото, например, окажется несколько дешевле свинца, то этот факт уже не будет иметь существенного значения.

Сделанного обзора вполне достаточно, чтобы показать (хотя и не доказать), что прогрессирующее истощение сырьевых ресурсов нам не угрожает. В этой невообразимо огромной Вселенной мы никогда не будем страдать от нехватки энергии или материи. Надо только не забывать о другой опасности — что нам может не хватить ума…


Примечания:



3

Вес конструкции ракеты (резервуары для горючего, двигателя и т. п.) фактически намного увеличит соотношение, но для существа спора это никакого значения не имеет.



33

С каждого квадратного метра солнечной поверхности можно получить около 80 000 лошадиных сил!








Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх