Часть IV. ДЕЛЬФИН ПАСЕТ СЕЛЕДКУ

РЕВОЛЮЦИЯ В БИОЛОГИИ: ЕЕ СМЫСЛ И ЗНАЧЕНИЕ

О развитии биологической науки и ее применении в практической деятельности рассказывает академик А.Баев.

Когда человек углубляется в прошлое, он всегда может найти в нем отдельные элементы того, что есть теперь. Но двадцатые годы нашего века с полным правом можно назвать временем рождения современной биологии. Она далеко ушла от своего первоначального состояния, совершенно непохожа на ту науку о жизни, которая существовала даже к началу нынешнего века.

Что же в ней произошло?

Во-первых, и это самое главное, существенное явление в биологии — неограниченное господство и применение представлений физики и химии. Эти науки помогли и помогают в изучении процессов жизни, столь отличных от предмета их собственных исследований. Они способствовали возникновению новых дисциплин — биохимии, биоорганической химии, биофизики, молекулярной генетики. Таким образом, возникло целое направление — физико-химическая биология.

Во-вторых, изменилось мировоззрение биологов. Символом веры биологии прошлого был целостный организм, а это означало невозможность расчленения сложных биологических явлений на отдельные простые составляющие. Однако оказалось, что можно изучать, к примеру, клетку, ее отдельные структурные элементы, имитировать в лабораторных условиях химические реакции, отдельные физические явления, происходящие в организме.

В-третьих, в биологию широко вошел эксперимент, иногда лишь отдаленно напоминающий те реальные явления, которые он моделирует. Благодаря этому биология из описательной науки превратилась в экспериментальную.

Все это говорит о том, что биология изменилась коренным образом, на смену плавному периоду в ее развитии пришел революционный.

Пожалуй, наиболее поразительные успехи получены в генетике. Прошло 115 лет со времени, когда Мендель начал свои классические опыты, приведшие к открытию законов наследственности.

А сейчас мы присутствуем при необычном подъеме, расширении генетических исследований в направлении генетической инженерии. Этой новой науке всего около девяти лет.

Наукой в настоящее время открывается и описывается такое множество явлений, создается столь много понятий, что вопрос о научной терминологии является актуальным и очень нелегким. Это по существу своему творческий процесс, некоторые терминологические нововведения кажутся естественными и не вызывают никаких сомнений, другие — вызывают.

Какой же смысл вкладывают в понятие «генетическая инженерия»? Ее содержание составляет система экспериментальных приемов, позволяющих создавать в лаборатории, в пробирке искусственные генетические структуры. В этой работе биолог-экспериментатор выступает как творец, как конструктор.

Идея лабораторного воспроизведения генетических структур существовала давно, однако ученые не представляли себе, каким способом из молекулы дезоксирибонуклеиновой кислоты (ДНК), являющейся конкретным носителем наследственности, можно выделить нужные гены и как затем их собрать в единую работающую структуру. Сейчас это удалось осуществить.

Каждый ген, ответственный за тот «ли иной наследственный признак, соответствует определенному отрезку молекулы ДНК. А она, в свою очередь, представляет собой цепочку, нить биологического полимера довольно большой протяженности и большого молекулярного веса.

У простых вирусов число генов невелико, может доходить до нескольких единиц, у бактерий — их уже несколько тысяч, у высших организмов, в том числе у человека, — сотни тысяч или даже несколько миллионов генов.

Каждая клетка многоклеточного организма имеет равное и полное число генов, свойственных данному организму. Однако в каждой клетке из этого общего фонда, называемого геномом, работает лишь определенный набор генов, выполняя строго предписанные ему природой функции. Остальные гены находятся как бы в резерве, устранены от активной деятельности.

В настоящее время число изученных генов, например, у некоторых бактерий составляет несколько сотен. Генетическая инженерия пока оперирует в пробирке с единичными генами, можно выделить определенный ген из одного организма и перенести его а другой, заставить его более или менее автономно работать в клетке, куда он помещен. Но это еще «гость» в клетке, его приютившей. Ввести же «лачку» генов пока мы не можем, потому что не в состоянии обеспечить их согласованную работу между собой и с т «ми генами, которые есть в клетке-хозяине.

А в организме они работают, как в хорошо слаженном симфоническом оркестре. Средства, которыми достигается такая слаженность, пока наукой до конца не поняты.

Генетическая инженерия делает лишь свои первые шаги. И все-таки она считается сейчас самой фундаментальной областью современной биологии. И вот почему. Ученые, используя методы генетической инженерии, работают не вслепую, а по заранее разработанному плану, целенаправленно.

Ученым удалось найти инструменты, пригодные для таких операций. Это созданные самой природой ферменты. Они содержатся в живых клетках. Одни из них рассекают молекулы ДНК в строго определенных участках на различные куски, другие, наоборот, их сшивают в единое целое.

Для этого, естественно, надо хорошо знать структуру того куска ДНК, который используется в эксперименте, его свойства и функции. В этой области, как я думаю, находится точка роста современной биологии.

Полным ходом идет работа по пути промышленного получения биологически активных веществ, различных лекарственных средств. Среди них — инсулин, интерферон, гормон роста — соматотропин, другие гормоны, в том числе гормоны щитовидной железы, стимуляторы иммунитета. С помощью генетической инженерии могут быть получены клетки — суперпродуценты, производящие свойственные им продукты в повышенных количествах. В результате можно получить такие важные вещества, как аминокислоты, ферменты, витамины.

В Основных направлениях экономического и социального развития нашей страны, утвержденных XXVI съездом партии, поставлена задача разработки биотехнологических процессов для производства такой продукции, которая будет широко использоваться в медицине, сельском хозяйстве, самой промышленности.

Само слово «биотехнология» появилось недавно, хотя биотехнологию человечество использует с давних времен. Различные ферментационные процессы, например производство хлеба, молочнокислых продуктов, пива, вина… К овладению этими процессами человек пришел чисто эмпирическим путем.

В нашем же столетии, вернее, в его середине биотехнология стала строиться уже на основе науки, в первую очередь микробиологии. Наступил ее второй в истории человечества этап.

Один из примеров такой биотехнологии — производство кормового белка для животноводства на основе парафинов нефти с использованием дрожжей.

Сейчас в нашей стране, как и в других передовых странах, существует огромная микробиологическая промышленность. И эта часть биотехнологии получает второе дыхание. Дело в том, что в микробиологической промышленности открылась возможность широкого использования так называемых иммобилизованных ферментов.

А сейчас уже возникает новая биотехнология, первым разделом которой являются генетико-инженерные манипуляции.

Таким образом, наряду с механической и химической технологиями огромное развитие получает биологическая. Она имеет существенные преимущества: в аппаратурном, технологическом отношении она проще, менее энергоемка, ее отходы менее опасны для окружающей среды.

Можно предвидеть еще одну мощную индустриальную революцию, теперь уже связанную с биологией.

Я уже сказал, что первый раздел новой биотехнологии — генетическая инженерия. Другими разделами являются клеточная и уже заявляющая о себе субклеточная инженерия.

Чем все эти разделы новой биотехнологии отличаются друг от друга? Сначала о том, что их объединяет. В основе лежат одни и те же приемы микробиологии. Различие можно проиллюстрировать на примере производства интерферона — важного противовирусного средства, используемого последнее время также при лечении опухолей. Его можно получить, по крайней мере, двумя способами. Используя методы генетической инженерии, надо сначала выделить человеческий ген интерферона, присоединить его к набору других генов, например кишечной палочки, затем ввести в клетку. Новая генетическая информация приведет к изменению обмена клетки, и в результате будет получен интерферон, по своим характеристикам соответствующий введенному гену.

А можно его получить, выращивая культуры клеток того же человека. Это довольно трудоемкий процесс, потому что животные клетки в отличие от растительных очень капризны и требовательны к среде. Растительные же клетки пока непригодны для получения человеческих гормонов.

Что касается субклеточной инженерии, то эти работы ведутся еще только в передовых лабораториях мира.

Конечные продукты при генетико-инженерных манипуляциях можно получить иные, чем в природе. Иногда аналогов их в природе вообще нет. В природе нельзя смешать различные виды. Например, нельзя получить гибрид человека и растения. А на основе генетической и клеточной инженерии, путем слияния клеток, все это сделать возможно.

Пока работа идет с единичными генами. Излюбленные объекты для исследования — некоторые разновидности кишечной палочки, широко распространенной в природе бактерии. И эти самые обычные в генетической инженерии объекты нежизнеспособны в окружающей среде, они не выживают в кишечнике человека.

Для проверки проводили очень простые опыты. Добровольцы выпивали несколько миллиардов особей кишечной палочки К-12, полученной методами генной инженерии. Через несколько дней оказывалось, что этой бактерии в кишечнике уже нет — она не выдерживала конкуренции с бактериальной флорой, населяющей кишечник человека. В принципе можно работать с любыми другими микроорганизмами. Однако осторожность должна всегда соблюдаться. Хотя мне думается, что опасения относительно генетической инженерии были с самого начала сильно преувеличены, особенно в США. На патогенные микроорганизмы нельзя смотреть как на какие-то неудачные творения природы. Это в высшей степени совершенные существа в бактериальном мире. И поэтому нельзя получить патогенную форму слепым применением генетико-инженерных манипуляций. Такая форма может быть создана в результате кропотливой и целенаправленной работы. Случайность здесь исключена…

Я много говорил о тех новых сторонах биологии, которые появились в ней в нынешнем веке. А как обстоит дело с ее классическим наследием, например с известным всем нам еще со школьной парты эволюционным учением?

Эволюционное учение, основоположником которого был Чарльз Дарвин, играет огромную роль и сейчас. Конечно, под влиянием современных знаний оно стало намного глубже, богаче. Но, подчеркиваю, силы своей эволюционное учение не утратило. Это одно из фундаментальных учений, адекватно отражающих процессы, протекающие в природе.

Последние годы, однако, теория Ларвина находится под прицельным огнем нападок не только со стороны консервативных сил, но и лженоватороов в науке.

Прежде всего напомню, что с момента появления эволюционной теории Дарвина разгорелась острая борьба вокруг нового учения. И основную роль в ней играла церковь. Она боролась за свои воззрения на виды животных и растений, как «богом созданные» неизменные, против основного положения теории Дарвина о естественном отборе. Сейчас эту борьбу против цинизма с новой силой начали религиозные организации, особенно в США. Вновь поднимается на щит библейский миф о сотворении мира, вновь, опираясь на пробелы в доказательствах эволюционной теории, говорят об участии сверхъестественных сил в возникновении и развитии живого мира. Все это давно отвергнуто здравомыслящими людьми, но, например, в США, в Сан-Диего (штат Калифорния) серьезно рассматривается под эгидой «науки». Здесь создан для этого специальный Институт креационистских (от латинского creatio — сотворение) исследований. Я читал книгу его директора доктора Мориса. Она называется «Сотворение мира. Научный подход». Основная идея автора: мир — это акт сверхъестественного творения. Основные аргументы — недостаточная доказательность отдельных положений теории Дарвина. Это обычные спекуляции на науке, а не сама наука.

Есть возражения против эволюционных воззрений Дарвина и в среде более серьезных исследователей. В прошлом году, например, в США состоялась международная научная конференция по теории эволюции. На ней утверждалось, что представления о мутациях и дарвинском отборе годны только для объяснения развития в пределах малых сообществ организмов, в пределах популяций, но они не способны объяснить возникновения семейств и более крупных таксономических единиц. Ссылались при этом на палеонтологические данные, которые якобы свидетельствуют о длительном (миллионы лет) существовании видов, которые затем неожиданно исчезают, и на смену им так же неожиданно приходят другие.

Авторы этих утверждений, видимо, не учитывают работ в области молекулярной генетики. Изучать эволюцию можно уже не только по ископаемым остаткам, то есть средствами палеонтологии, но и на молекулярном уровне. Например, можно установить генеалогию отдельных белков и проследить таким образом эволюцию макромолекул, а не только целого организма.

Существенный интерес представляет и такой вопрос. Если время биологической эволюции три миллиарда лет, то хватит ли его для того, чтобы путем накопления малых изменений генетического аппарата получить все разнообразие высокоорганизованных существ, созданных фактически природой?

В последние годы установлены факты существования подвижных генетических элементов. Это довольно большие куски генетического аппарата, которые с определенной частотой могут перемещаться в пределах генома и приводить к крупным мутациям. Затем нужно принять во внимание то, что ген, как оказалось, представляет не сплошную последовательность ДНК, а перемежается со вставками, которые не имеют отношения к тому белку, который будет создан на этом гене.

Таким образом, надо непредвзято относиться к новым и новым фактам, добываемым истинной наукой, а эти факты еще больше подтверждают фундаментальность теории Дарвина…

Роль биологии в общечеловеческой культуре многообразна. Каждый человек, кем бы он ни был: ученым, строителем, рабочим, — он все-таки живое существо. И многое в жизни не может быть правильно понято без учета биологической природы человека. Конечно, люди — социальные существа. Их интеллектуальный багаж, мировоззрение, нравственность формируются под влиянием общественных отношений. Но и биология человека накладывает свой отпечаток, определяя диапазоны его физических и интеллектуальных возможностей. Они, конечно, небезграничны, но и достаточно широки.

Огромен вклад биологии в мировоззрение современного человека. Достаточно сказать, что из недр биологии вышла идея развития, одна из фундаментальных идей прошлого и современности.

Когда человек приобщается к биологии, знакомится с поведением животных, законами развития растений и т. п., то его восприятие окружающего мира расширяется и углубляется, его внутреннее «я» становится полноценным и богатым. В конце концов, Земля — это мир, самый близкий человеку. Проследите внимательно, что сообщают нам из космоса наши космонавты. Они часто говорят, что смотрят на Землю. Мир человека все-таки Земля…

В наш век ошеломляющих открытий появляется и много сенсационных сообщений, которые зачастую становятся предметом не научного знания, а веры и суеверия. Это очень актуальный и острый вопрос. Сейчас усиленно пропагандируется, особенно на Западе, парапсихология, телепатия, предвидение будущего, основанное на интуитивном предчувствии, психогенез. К парапсихологии и, как их иногда называют, пси-явлениям примыкает, увы, и представление о биологическом поле.

В этих областях можно встретить мистически настроенных людей и немало разных проходимцев. Например, в США в центре внимания долгое время был некий Ури Геллер, который якобы был способен останавливать часы на расстоянии и силой внушения гнуть ложки. Шум вокруг этой фигуры вызвал неудовольствие не только у ученых, но и у профессиональных фокусников. Они считали, что парапсихологи отбивают у них честно заработанный хлеб. Оригинальный способ борьбы с подобной конкуренцией изобрел Джеймс Рэнди, один из известных американских иллюзионистов. Он просто-напросто учредил «призы Ури». Один из них, например, присуждается лицу, высказавшему о парапсихологии самую большую глупость, другой — за исполнительское мастерство «экстрасенсу», который при наименьших способностях обведет вокруг пальца наибольшее число людей.

Неопределенность в оценке тех или иных псевдоявлений вносит, бесспорно, то, что в последнее время слишком много «открывают» необыкновенного. И естественно, возникает иллюзия, что нет ничего в природе невозможного. Я лично считаю, что это неправомерный взгляд на природные явления. Несомненно, природа поставила границы возможного, по крайней мере, в обитаемом нами мире.

В свое время в печати сообщалось об экспериментах итальянца Петруччи, которому якобы удалось вырастить плод человека в искусственных условиях. Все это оказалось недостаточно надежным и добросовестным и в историю науки не вошло. Пользуясь генетико-инженерными манипуляциями, в данное время нельзя создать даже самое простое существо. Наука пока оперирует отдельными генами, а всякое живое существо имеет законы регуляции деятельности генов в живом организме.

Эксперименты в биологии становятся все сложнее и сложнее. Основательно расширяется круг применяемых реактивов и препаратов, получение которых чрезвычайно трудоемко, хотя и производятся они иногда в граммах и даже миллиграммах. Вместе с тем должен отметить, что не всегда в биологии, как и в любой другой науке, нужны дорогостоящие установки и препараты. Иногда остроумные идеи, положенные в основу опыта, не требуют особенно — какого инструментального оформления. Возьмите опыты Менделя. Кроме семян душистого горошка и обычной лопаты, никаких реактивов и инструментов не было. Или опыты по гибридизации клеток, открывшие новую эру в клеточной биологии: кроме обычного микроскопа, существующего ш» чти четыре столетия, никакой аппаратуры не применяли. Таких фактов много.

ЭТО особенно важно помнить нашим молодым коллегам в науке. Нужны ей в первую очередь. Без них наука развиваться не может.

Вклад молодежи в науку очень высок. Не могу не упомянуть, например, о работе моего ученика Андрея Дарьевича Мирзабекова из Института молекулярной биологии. Он занимается строением нуклеосом, входящих составной частью в элементарную структуру хромосом. Эти работы находятся на переднем крае мировой науки. И наша страна имеет здесь заслуженный приоритет.

В целом наша научная молодежь могла бы многое сделать в науке. Надо только дать ей больше свободы действий и инициативы. На мой взгляд, следует смелее выдвигать молодых людей непосредственно после 30 лет. Это тот возраст, когда молодой биолог уже прошел хорошую школу предварительной работы, когда есть и идеи, и физические, интеллектуальные силы. Ведь наука, особенно фундаментальная, требует от ученого мобилизации всех его, без остатка, сил.

Выдвигая молодых, мы не можем допускать того, чтобы они при этом уходили от лабораторного стола, занимались лишь руководящей научной работой, обрастали студентами, стажерами, аспирантами. Роль экспериментальной работы сейчас в науке, как никогда, высока. И опыт мировой науки показывает, что только тот достигает в ней вершин, кто сам непосредственно экспериментирует.


ОБЕЗЬЯНА… ПОКУПАЕТ БАНАН?

Можно ли научить обезьяну совершать покупки? Причем не в плане цирковых представлений, не на потеху зрителю. А так, чтобы она совершала свои «товарные сделки» в силу собственной потребности, в свое, так сказать, удовольствие… Вопрос, поставленный именно таким образом, для науки не праздный.

Любопытнейший эксперимент, проведенный Анатолием Ивановичем Счастным, ответил однозначно: да, можно! Но для этого, конечно, пришлось поработать и над формой «денег» для обезьяны — они должны быть достаточно простыми в обращении. Пришлось потрудиться и над тем, чтобы обучить обезьяну «читать» эти деньги.

Доктор биологических наук А. С частный, сотрудник Института физиологии имени И. П. Павлова в Ленинграде, выбрал для проведения этого эксперимента шимпанзе. И не одну обезьяну, а двух, чтобы… Впрочем, все по порядку.

Сначала шимпанзе была только в роли пассивного «покупателя». Роль эта оказалась достаточно несложной: нужно было только есть, пить и играть. Правда, экспериментатор при этом стоял у нее, образно говоря, «над душой». А именно: прежде чем предлагать еду обезьяне, он показывал ей треугольный жетон; лишь предъявив квадратный жетон, поил ее; затем, обратив внимание обезьяны на жетон круглой формы, исследователь предлагал ей какую-либо игрушку. Все это повторялось не один раз. И вот когда обучение, по мнению ученого, достигло своей цели, настала пора экзамена. Трудно, конечно, сказать, кто здесь больше волновался — экзаменуемый или экзаменатор. Наверное, все же сам экзаменатор…

В распоряжении шимпанзе были предоставлены сразу все три вида «денег»: треугольный, квадратный и круглый жетоны. Обезьяна, достаточно голодная к тому времени, недолго думая, выбрала треугольный жетон («деньги на еду»!) и… протянула его человеку. Обед был заработан честно, да и отметку, будь у шимпанзе зачетная книжка, можно было бы с твердой уверенностью поставить отличную. Тем более что, испытывая жажду, она столь же безошибочно выбрала квадратный жетон. А вздумав поиграть, отдала человеку круглый. Что и говорить, «покупатель» из обезьяны вышел отменный!

И все же, согласитесь, участие человека в такой акции может навести на мысль: а не было ли там подсказки (прямой или косвенной, какая разница!), не слукавил ли экзаменатор, пытаясь помочь своему меньшому брату? Да и само уже то, что партнером обезьяны в этом необычном «товарообороте» являлось лицо, несравненно более высокоразвитое, стоящее на высшей ступени эволюции, человек, конечно же, облегчало существо дела.

Но вот если свести этих обученных шимпанзе друг с другом без посредничества человека? Если дать им возможность попытаться наладить контакт с себе равными? Каков тут будет исход? Хватит ли ума, как говорится, не поссориться, понять намерения друг друга?

Скажем сразу: обезьяны из этой необычной для них жизненной ситуации вышли с честью. «Сделка» состоялась на уровне. Подробности же таковы. Чтобы обеспечить естественную потребность в самом акте «купли-продажи» обеих сторон, одна из обезьян была накормлена и напоена, и рядом с нею была положена еще в избытке пища (бананы); вторая же обезьяна — голодная — владела к моменту встречи лишь… игрушкой. Обе были снабжены — можно так выразиться без особой натяжки! — необходимыми «деньгами на карманные расходы». То есть у каждой был полный набор жетонов для участия в «торговле». И вот («голод не тетка!») голодная обезьяна подает сигнал бедствия своей соседке: сквозь тонкую решетку, разделяющую клетку, она протягивает ей «пищевой» треугольник.

Владелица бананов благосклонна: не торгуясь, она демонстрирует свою верность принятому курсу акций — в обмен на данные ей «треугольные деньги» просовывает между прутьями решетки банан. И… не удержалась от искушения! Очень уж ей, как видно, приглянулась игрушка, и она сама становится покупательницей: просит уступить «по сходной цене» вещь, держа в руке «деньги на игрушку», круглый жетон. Игрушка куплена… Обе стороны явно удовлетворены общением!

Стоит повторить в заключение: не ради забавы был организован этот в общем-то забавный эксперимент. Он свидетельствует: высшие животные способны принять систему условных сигналов для общения, предложенную людьми, и вступать — сих помощью — в контакт и с человеком, и с себе подобными.


ШАНС ДЛЯ ДИНОЗАВРА

О том, что когда-то на Земле жили исполины, перед которыми крошечным покажется самый высокий человек, говорят легенды и мифы различных народов. И лишь в начале прошлого столетия, когда родилась наука палеонтология, стало ясно, что кости «великанов», которые показывали как святыни, или останки людей, живших «до потопа», на самом деле принадлежат животным, жившим за многие миллионы лет до того, как на планете появились люди. Сказочные драконы и чудовища — порождение фантазии, однако возникшей не на пустом месте. Источник сказаний — кости и следы реальных страшилищ, ящеров чудовищных размеров.

Ящеров этих стали называть динозаврами, что в переводе с греческого означает: сильные, страшные, тяжеловесные ящеры. Сам термин не совсем удачен: кроме ящеров-исполинов, были найдены и динозавры величиной с лошадь, зайца и даже… тушканчика. С другой стороны, «динозаврами» в широком смысле слова называют гигантских рептилий, не являющихся представителями динозаврового племени: плезиозавров, ихтиозавров и т. д.

«Охотники за динозаврами», палеонтологи, сумели, хотя и не во всех деталях, воскресить картину удивительной жизни, которая кипела на Земле семьдесят, сто, двести миллионов лет назад. Владыками планеты в ту пору были огромные пресмыкающиеся. Гипсовый слепок травоядного ящера диплодока занимает целый зал музея Академии наук: диплодоки достигали 25 метров в длину! Бронтозавр был не столь длинным, но весил больше пяти слонов. Под стать травоядным динозаврам были хищники во главе с тиранозавром, чудовищем длиной в 14 метров, вооруженным когтями и зубами величиной с кинжал. В воздухе царили крылатые ящеры, по сравнению с которыми жалкими птахами показались бы нынешние орлы (размах крыльев ящера-птеранодона достигал семи метров!).

В водах мелководных морей, озер и рек господствовали хищные рептилии: ихтиозавры, «рыбоящеры» с хвостом рыбы, мордой дельфина, зубами крокодила и плавниками кита; плезиозавры, имевшие еще более причудливый облик (представьте себе змею, которую продели сквозь тело ящерицы и снабдили ластами); змееподобные мозозавры, достигавшие 15 метров в длину; плиозавры, чей череп имел два-три метра в длину, а пасть была вооружена огромными трехгранными зубами.

Итак, суша, море и воздух принадлежали огромным ящерам. Почему же 60–70 миллионов лет назад они вымерли, причем очень быстро, катастрофически? Загадка гибели динозавров — «загадка номер один» для палеонтологии. Выдвинуто несколько десятков гипотез, авторы которых пытаются объяснить исчезновение рептилий изменением климата Земли, вспышкой сверхновой звезды, возрастанием силы тяжести и эпидемиями, конкуренцией со стороны млекопитающих и эволюционным тупиком, «братоубийственной войной» и массовым самоубийством, падением астероида и рахитом, неспособностью приспособиться к темпам быстро меняющейся жизни и высадкой «пришельцев из космоса», резким похолоданием и, наоборот, внезапным усилением жары. Список гипотез и их аргументация потребовали бы целой книги. И тем не менее ни одна из них не может считаться убедительной. Вероятней же всего, гибель динозавров была связана с целым комплексом причин, выявление которых — дело будущих исследований.

Но, быть может, в каких-либо уголках нашей планеты сохранились «экологические ниши», где последние динозавры сумели дожить и до наших дней? Ведь есть же на Земле, и особенно в ее водах, «живые ископаемые», существа, которые являются ближайшими родичами динозавров и даже более древними обитателями, чем чудовищные ящеры. Нет на планете существ, более близких вымершим динозаврам, чем крокодилы.

В Новой Зеландии обитает гаттерия, единственный живущий в наши, дни представитель «первоящеров» — про-завров, сохранившая облик животных, обитавших за десятки миллионов лет до динозавров. Черепашье племя сформировалось двести миллионов лет назад и почти не изменилось до нашего времени. «Современницей человека и динозавра» называют всем хорошо знакомую лягушку. Многие виды рыб, например акулы, скаты, осьминоги, осетры, также возникли до того, как хозяевами планеты стали динозавры.

Но и акулы, и крокодилы, и черепахи, и лягушки известны человечеству с давних пор. Можно ли сейчас, в двадцатом веке, открыть «живое ископаемое»?

В начале нашего века на индонезийском острове Комодо были обнаружены «драконы», огромные ящерицы — вараны, чья длина превосходит три метра (а по некоторым данным, достигает и четырех-пяти метров). Настоящей сенсацией стало открытие в Индийском океане, возле Коморских островов, кистеперой рыбы — целакан-та, считавшейся вымершей сто миллионов лет назад. Это заставило многих исследователей всерьез задуматься о том, не сохранились ли в воде и на суше и последние динозавры.

Первым «кандидатом на динозавра», живущего и поныне, по праву считается таинственное существо, которое, судя по многочисленным рассказам очевидцев, обитает в водах шотландского озера Лох-Несс. Снимок «Несси», как стали именовать это существо, был сделан еще в 1934 году. С тех пор в мировой прессе не раз и не два появлялись сенсационные заявления очевидцев — и простых туристов, и профессиональных ученых — о встречах с загадочным существом. Публиковались фотографии, на которых, правда, трудно различить четкие контуры живого существа. Чуть ли не каждый год на поиски «Несси» отправляются экспедиции, оснащенные электронной аппаратурой, миниатюрными подводными лодками и даже… дрессированными дельфинами.

В последние годы у «Несси» появились серьезные конкуренты. «Мораг»— так именуют загадочного монстра, который, судя по рассказам и легендам, обитает в водах шотландского озера Лох-Морар, лежащего лишь в четырехстах метрах от берега моря.

«Шамп» — фамильярно называют другое легендарное чудовище, будто бы живущее в озере Шамплейн, расположенном между американскими штатами Вермонт и Нью-Йорк. Сведения о «неодинозаврах», существах, похожих на гигантских рептилий, считающихся вымершими, приходят из Тропической Африки и полярной Якутии.

Означает ли это, что все эти устные свидетельства имеют под собой реальную почву?

Если мы желаем найти живое существо, а не мифического дракона, поиск «неодинозавра» должен вестись с соблюдением всех «правил игры», в которую вот уже несколько миллиардов лет «играют» все живые существа на нашей планете против неодушевленной природы. Судя по рассказам и легендам, таинственные существа, обитающие в водах Лох-Несса и других озер, имеют размеры, соответствующие величине динозавра. Чтобы поддерживать свое существование, животные эти должны питаться. Истина, казалось бы, прописная.

Но как понять в ее свете заявления «охотников за «неодинозаврами» о том, что в сибирском озере, где поселилось чудовище, не водится рыба, а в африканских болотах, где живет таинственное животное, исчезли бегемоты, пошедшие на корм динозавру? Чем питается хищник, пожравший всех рыб в северном озере или всех бегемотов в африканском болоте? Наблюдателями, пытающимися его сфотографировать? Но, судя по словам этих наблюдателей, чудовище проявляет удивительную скромность, если не трусость, перед фотообъективом или кинокамерой. Трудно себе представить, чтобы так вел себя голодный хищник-динозавр. А для того, чтобы насытить огромного травоядного динозавра, требуется обширная кормовая территория, так как съедать он должен гораздо больше растительной массы, чем слон, чей аппетит вошел в поговорку.

Живые существа не только едят, но и размножаются, иначе они вымрут. Снова тривиальная истина? Но ее опять-таки надо принимать во внимание, если мы стремимся открыть неизвестное животное, а не ведем бесплодную охоту за мифическим персонажем, «драконом», существующим лишь в воображении. Любая популяция животных, будь то землеройка или динозавр, должна насчитывать несколько сотен экземпляров, в противном случае этот вид исчезнет.

Вот почему почти все специалисты-зоологи скептически относятся к романтическим попыткам обнаружить динозавров в озере Лох-Несс, болотах Тропической Африки и тем более водоемах полярного Севера. Замкнутые водоемы вроде шотландского озера Лох-Несс или якутского озера Хайыр, африканского болота Бангвеулу и т. п. не в состоянии обеспечить пищей популяцию плезиозавров или родственных им ящеров длиной в несколько метров и весом во много тонн, численностью минимум в 150–200 особей. Единственный реальный шанс для динозавра сохраниться до наших дней — это не изученные по сей день глубины Мирового океана.

Число гипотез, посвященных природе этого «дракона моря», приближается к трем десяткам. Весьма вероятно, что многие сообщения о «морском змее» на самом деле относятся к морским водорослям, стае мелких животных, вытянувшейся в линию, щупальцам гигантского кальмара, «сельдяному королю», рыбе, имеющей змеевидное тело и голову, украшенную своеобразной «короной», напоминающей гриву, колоссальных размеров угрю и т. п. Но возможно, что в ряде случаев, судя по описаниям очевидцев, имела место встреча с неизвестным науке пресмыкающимся, сумевшим приспособиться к жизни в водной стихии, подобно морским черепахам и змеям.

Хотелось бы верить, что еще в нашем веке будет сделано открытие живого динозавра — и это стало бы одной из величайших научных сенсаций. Но искать динозавров надо там, где они действительно могут обитать, с учетом их биологии, способа размножения, генетики и экологии. Если же этого не учитывать, поиски «живого ископаемого», какими бы добрыми намерениями ни руководствовались участники экспедиций за «Несси и сородичами», будут аналогичны поискам квадратуры круга, вечного двигателя и другим столь же бесперспективным делам.


ДЕЛЬФИНОВ ТЯНЕТ НА СУШУ

На протяжении последних десятилетий дельфины постоянно интересуют людей. Созданы специальные центры по изучению их биологии. Некоторые исследователи даже пытаются установить контакт с «интеллектуалами моря». На пути специалистов встает немало препятствий. Одна из самых интересных загадок, связанных с поведением дельфинов, — их неожиданные выбросы на берег.

Флорида. Жаркий летний день. Внимание отдыхающих привлекают три черных плавника, которые, разрезая воду, неумолимо приближаются к берегу. Все ближе и ближе, люди уже различают очертания дельфинов и с интересом наблюдают за их поведением. Неожиданно животные на полной скорости выбрасываются на песчаный пляж. Через некоторое время в километре от этого места на берег выбрасываются еще шесть дельфинов.

На следующий день на сушу выбросилось целое стадо более чем из 50 млекопитающих. Любопытно: когда некоторых из них стаскивали в море, они вновь стремились к берегу.

Что думают по этому поводу ученые? На этот вопрос отвечает доктор биологических наук А. Яблоков:

— Биологи до сих пор пытаются разгадать этот необычный феномен природы. Из всех морских животных только у китообразных, к которым относятся и дельфины, наблюдается подобное явление. Известно, что дельфины ориентируются в море с помощью поразительного по своей чувствительности локационного аппарата. В бассейне с водой они легко находят горошину. Есть предположение: загадочные выбросы связаны с тем, что локационный аппарат по каким-то причинам дает «сбой» и животные, потеряв ориентацию, выбрасываются на берег. Но ведь не может сразу у десятков дельфинов выйти из строя этот орган!

Другая распространенная гипотеза — у дельфинов проявляется стадное чувство. За вожаком на берег устремляется все стадо. А почему сам вожак решил выброситься? Неясно. К тому же наблюдались случаи, когда большое стадо дробилось на группы, которые сами по себе выбрасывались на сушу.

Еще одно любопытное предположение — животных поражают неизвестные смертельные заболевания или психические расстройства. Не дожидаясь рокового исхода, они кончают жизнь самоубийством. Это объяснение также потерпело фиаско. Обследование животных на берегу показало, что они вполне здоровы психически и физически. Кроме того, после спасения некоторых из них помещали в океанариумы. Там они жили долгие годы, легко поддавались дрессировке и ничем не отличались от своих собратьев, пойманных в открытом море.

Сейчас о наличии разума у дельфинов существуют разные точки зрения.

Одни исследователи считают, что по своему развитию эти животные мало чем отличаются от других высокоразвитых млекопитающих. Другие склонны думать, что дельфины — разумные существа, с которыми мы еще просто не можем найти общий язык.

Я склоняюсь ко второй точке зрения. Интеллект дельфина — это необычное явление, к которому нельзя подходить с привычными человеческими мерками. В явлении самовыбрасывания сконцентрировалось то непознанное, что связано с разумом дельфинов, их психическими особенностями. На мой взгляд, это проявление пока недоступной для нас логики мышления. И если науке удастся найти ключ к разгадке этой тайны, мы, видимо, сможем ответить на волнующий вопрос: «Разумные ли существа дельфины?»


ДЕЛЬФИН ПАСЕТ СЕЛЕДКУ

Средний рыболовный траулер «Индра» рыскал в дальневосточных водах. Ему предстояло найти косяк сельди и загнать ее на нерест. Эксперимент ученых, о котором идет речь, ставил своей целью приобщение к селедочной проблеме… дельфинов.

Не так давно казалось, что такие деловые контакты человека и дельфинов если и возможны, то лишь в очень отдаленном будущем. Многие просто не верили в их перспективность, считали это выдумкой фантастов. Переубедить скептиков можно было, только предъявив результаты экспериментов.

Почему именно дельфина выбрал человек в друзья? В морском мире много животных, достойных его дружбы, — котики, сивучи, каланы, тюлени, например. Почему бы не заняться ими, обучая профессии морского «чабана»? Не те «кадры», да еще и признанные лежебоки. Дельфин явно подвижнее, а главное — имеет хороший акустический контакт с промысловой рыбой (сельдью, скумбрией, сардиной).

Дельфин может издавать особые сигналы, искусно уходя в область низких частот, доступных слуху рыб. Наблюдая за ловкими маневрами дельфинов, ученые заметили их способность долгое время удерживать очень быстрых рыб (в частности, скумбрию) в плотной стае, не давая им «разбегаться».

В модельных условиях были проведены опыты по воздействию различных сигналов дельфинов на поведение промысловых рыб. Организованные с помощью сотрудников Института эволюционной морфологии и экологии животных Академии наук, Института биологии моря Дальневосточного научного центра физиологические исследования позволили выбрать из «языка» дельфинов те звуки, которые вызывают активную реакцию рыб. Звуки, между прочим, оказались очень простыми — свист на фоне бульканья и шипения…

Итак, судну «Индра» было придано двадцать дельфинов. Цель им определили благородную: не гнать рыбу в сети, а выгонять рыбу, идущую на нерест, с заморных участков, образовавшихся в результате заиливания или интенсивного перемещения грунта, и направлять ее «на путь истинный», то есть в те места, где бы она могла отнереститься и сохранить потомство.

Открою секрет сразу: не было двадцати живых дельфинов. Были приборы, имитирующие боевой клич развернутого дельфиньего стада, идущего»; в атаку на рыбий косяк. Голоса записали возле Бразилии, где-то в районе Рио-де-Жанейро.

Точно установили, что это был боевой клич. Но вот вопрос: «сработает» ли «бразильский язык» дельфинов в Охотском море? Поймут ли его наши дальневосточные селедки? Предыдущие опыты показали, что послушна сигналам афалин лишь та рыба, которая обитает в местах, где «прописаны» эти дельфины. Пробовали пугать сельдь в заливе Петра Великого, где нет мудрых животных, — никакого эффекта. Пробовали там, где дельфины — редкие гости, результат есть, но слабый. И тогда решили провести эксперимент на Севере.

Операторы включили приборы — и огромная масса рыбы стремительно изменила направление, бросившись наутек от опасности. «Дельфины», как заправские пастухи, погнали стадо на нерестилище. Что и требовалось доказать. До этого еще никому не удавалось «сдвинуть» сельдь с места, облюбованного ею во время нереста.

Сейчас эксперименты по воспроизводству сельди продолжаются. Работа эта, трудная и благородная, не только демонстрирует возможности науки. Она учит человека быть рачительным хозяином.


ПО МАГНИТНЫМ МАРШРУТАМ

Как известно, дельфины, птицы, насекомые, даже бактерии используют магнитное поле земли для ориентировки. А недавно к этой группе ученые присоединили и рыб — лососей. Вернее, их разновидность — нерку, мальки которой первый год жизни проводят в пресной воде озер, а затем начинают двигаться к океану.

Выловив мальков нерки из трех различных озер, исследователи помести ли их в резервуары с водой. И обнаружили, что и здесь они продолжают двигаться в том же направлении, что и в озерах. Более того, когда меняли направление магнитного поля вокруг резервуаров, мальки соответствующим образом меняли и свой курс. К тому же выяснилось, что они менее зависимы от магнитных полей в дневное время, когда могут ориентироваться по солнцу. А в темноте роль магнитного поля увеличивается.

Правда, в отличие от голубей у нерки не обнаружили «внутреннего магнита». Поэтому ученым еще предстоит ответить на вопрос: какой внутренний «навигационный прибор» играет столь важную роль в способности этих рыб правильно ориентироваться?


ТАЙНЫ МОЗГА ДЕЛЬФИНА

Как спят дельфины? Вопрос этот возник не случайно. Дело в том, что все высшие животные (птицы и млекопитающие, включая человека) не только обязательно спят какую-то часть суток, но и в наиболее глубоких стадиях сна полностью расслабляются, теряют подвижность.

Для дельфина это невозможно — обитатель моря, он дышит воздухом, и потеря подвижности грозит ему тем, что он не поднимется к поверхности воды для очередного вдоха, захлебнется. Давно замечено, что дельфины никогда не замирают в полной неподвижности, они всегда хотя бы слегка двигаются и поднимаются на поверхность для дыхания. Так спят ли они вообще и если да, то как и когда?

Существовало много предположений по этому вопросу. Но единственным надежным способом решить вопрос было изучение биоэлектрической активности их мозга, по которой можно уверенно сказать, когда животное бодрствует, а когда спит. Такие исследования были выполнены. Результаты оказались неожиданными.

До сих пор считалось само собой разумеющимся, что когда сон сменяется бодрствованием или бодрствование сном, то эти изменения происходят во всем мозге — ив правом и в левом его полушариях: ведь два полушария мозга отвечают за работу двух половин нашего тела. Именно так обстоит дело у человека и у всех животных, у которых до сих пор исследовался сон. Но у дельфина все происходит иначе. Два полушария мозга дельфина спят но одновременно, а поочередно: когда одно спит, другое активно.

Потом они меняются ролями, и то полушарие, которое было активно, засылает, а «выспавшееся» бодрствует. Оно и обеспечивает управление телом дельфина, необходимое, чтобы он нормально дышал и не захлебнулся. Естественно, есть время, когда бодрствуют оба полушария.


ВЛАДЫКИ ГЛУБИН

ЧТО МЫ ЗНАЕМ О КИТАХ…

Самые-самые… Самые длинные, самые тяжелые, издающие самые громкие звуки животные нашей планеты — киты. Именно они обладают самым большим мозгом. Совершают самые продолжительные и дальние миграции. Некоторые из них могут не спать на протяжении трех месяцев и «поститься» две трети года.

Что же мы знаем о китах, кроме того, что их параметры самые-самые?..

То, что киты совсем не рыбы, конечно, известно каждому школьнику. Они дышат воздухом через дыхала — отверстия, расположенные в верхней части головы. У них даже есть чуть-чуть волос. Самки китов родят под водой живых детенышей и выкармливают их молоком.

Словом, кит — это типичное теплокровное млекопитающее. Но в то же время это самое странное из всех млекопитающих. Его организм принципиально ничем не отличается от организма наземных млекопитающих, таких, как кошка или корова. Хотя, конечно, органы его получили специфическое развитие под влиянием среды обитания. Так что у зоологов есть все основания считать китов, как и человека, потомками наземных млекопитающих. Но если человек эволюционировал на суше, киты примерно 60 миллионов лет назад предпочли вернуться в море, породившее их. Причиной этого попятного движения, вероятнее всего, был поиск пищи, ко торой из-за какого-либо природного катаклизма на суше стало не хватать.

Заметим, колоссальные размеры, а иногда и слово «кит» в названии животных вовсе не гарантирует принадлежности млекопитающего к китам. Например, касатка, которую часто называют китом-убийцей, чья длина около 9 метров, а вес 10 тонн, на самом деле — дельфин. А изящная снежно-белая арктическая белуха длиной всего 5 метров, с гибкой, как у дельфинов, шеей относится к китам.

К ним же относится нарвал. И может быть, именно его трехметровый, закрученный спиралью рог цвета слоновой кости — а на деле это самый настоящий зуб — породил миф о морском чудовище — единороге, страшном враге морских судов прошлого.

Горбатый кит, спермацетовый кит, или кашалот, синий кит, сейвал, финвал имеют неоспоримые права быть причисленными именно к китам.

Как известно, киты бывают двух разновидностей: зубатые и усатые.


…И ЧЕГО НЕ ЗНАЕМ

Лучше всех из зубатых китов известен кашалот. Своей славой он обязан тому, что некогда в изобилии водился в большинстве морей и был излюбленной добычей китобоев, что не могло не сказаться на его численности. Ценился он за жирное воскообразное вещество, находящееся у него в голове, — спермацет, служившее высококачественным сырьем для свечей, косметических кремов и мазей. Еще больше — за амбру, служащую прекрасным закрепителем для нежного аромата самых изысканных духов. Образуется этот продукт в кишечнике и, возможно, служит для защиты пищеварительного тракта от твердых, словно камень, кальмаровых клювов и раковин каракатиц, которых кашалот пожирает в огромных количествах.

Вот тут и начинаются загадки. Известно, что кашалоты питаются гигантскими кальмарами, но неизвестно, как они обнаруживают свою добычу в непроницаемом мраке океанских глубин. Неясно и как настигает неповоротливый гигант проворную добычу — приманивает ли он кальмаров или преследует. Известно, что кашалоты издают хрюкающие, щелкающие, хрипящие звуки, но неизвестно — зачем и каким образом. Немало и других волнующих загадок.

Кашалоты, например, способны нырять на глубину до 800 метров. Находили этих животных, запутавшихся в подводных кабелях, на глубинах от 900 до 1100 метров. Разве не стоило бы знать, как млекопитающее может выдерживать давление, в 100 раз превышающее давление на поверхности? Особенно теперь, когда перед человечеством стоит задача научиться работать на больших глубинах.

Любопытно, что кит не просто погружается в воду — он ввинчивается в нее, волнообразно изгибая тело. Скорее всего такой метод выбран как наиболее экономичный. При погружении пульс падает до десяти ударов в минуту и кровь прекращает поступать в сосуды плавников, кожи, хвоста. Она питает только обширный мозг и сердце. Мышцы начинают выделять в кровеносную систему скрытые запасы кислорода. Расходуется и запас кислорода, накопленный в жировом слое. Он также поступает в кровеносную систему.

Есть мнение, что голова кашалота — естественный водолазный шлем. И именно сложная система клапанов и мешков в носу животного позволяет ему нырять на громадные глубины, а также сохранять плавучесть и издавать разнообразные звуки, В огромном асимметричном черепе кашалота заключен самый большой у млекопитающих мозг — до 8 килограммов. Зачем кашалоту такой мозг? Тем, кто считает, что вес мозга зависит от величины тела, заметим, что у синего кита, который значительно больше кашалота, мозг весит 3 килограмма.

Киты — единственное, кроме человека, млекопитающее, которое… поет. Многие из них издают низкие воркующие звуки, а горбатые и гладкие киты поют- «песни» — серии повторяющихся в определенной последовательности различных звуков. Песни китов так явственны, звуки так организованны, словно тут потрудился некий композитор. Самая короткая «ария» длится шесть минут, самая длинная — около получаса. Иногда солист часами исполняет на «бис» свой номер, останавливаясь лишь затем, чтобы освежить запас воздуха в легких. Смысл пения «сирен бездны» пока неизвестен, но, поскольку киты поют почти исключительно в период размножения, можно предположить, что пение выполняет какую-то функцию в их семейной жизни. Сначала считали, что поют только самцы, однако есть сведения, что самки поют песенки своим малышам.

«Репертуар» стада постоянно меняется. Возможно, «песни» служат для более сложного общения. Во всяком случае, каким-то образом все киты оказываются в курсе малейших изменений в обстановке. Как они об этом узнают? Да и вообще — как поют, если у них нет голосовых связок?

Впрочем, многие ученые склоняются сейчас к мнению, что звуковоспроизводящая система у китов находится в передней части головы. Это каналы, полости, клапаны и трубы, расположенные в костном ложе черепа за жировой подушкой, которая служит своеобразной линзой, направляющей и усиливающей акустический луч.

У китов нет обоняния, слабое, практически атрофированное зрение, поэтому звук сообщает киту почти все, что ему требуется знать. Киты постоянно заняты анализом подводных звуков. Масса их не несет никакой полезной информации, но быть настороже необходимо все время.

Страсть к пению не единственный талант горбачей. Кстати, горбач на самом деле вовсе не горбатый, а своим названием обязан привычке перед погружением выставлять над водой большую часть спины, что и создает впечатление горба. Так вот, кормятся эти киты, используя хитрый способ ловли рыбы. Они выпускают из дыхала пузырьки воздуха, образующие «сеть» цилиндрической формы вокруг косяка рыбы. Рыба не решается вырваться из «сети», а кит, распахнув пасть, плывет сквозь нее и заглатывает попавшую в ловушку рыбешку.

Киты легко отличают друг друга в стае. Но для человека это сложная задача, ведь он их видит всего лишь мгновения. Как же научиться различать китов, чтобы можно было проследить за ними? Ученые считают: по хвостам. Биологи обнаружили, что хвосты китов так же индивидуальны, как отпечатки пальцев у человека. На них легкоразличимы разрезы и борозды, шрамы от укусов касаток, пятна бурых водорослей создают неповторимый рисунок.

Иногда киты собираются «пообщаться». Так, было замечено, что в районе Бермудских островов во время миграции иногда сходятся две группы китов. После «совещания» одна из этих групп направляется в район Лабрадора— Ньюфаундленда, а другая в залив Мэн.

Самые длительные миграции совершают серые киты. Каждую осень они проплывают несколько тысяч километров от своих пастбищ в Беринговом проливе и Чукотском море до спокойных лагун полуострова Калифорния, где они и размножаются. В феврале они пускаются в обратный путь, причем во время этого трехмесячного путешествия лишь изредка останавливаются для сна.

А синие киты, обитающие как в северном, так и в южном полушарии, ежегодно отправляются на четырехмесячную кормежку к ближайшему полюсу. Все остальное время гиганты, очевидно, постятся, перерабатывая запасы накопленного жира.

Синие киты, как финвалы и сейвалы, относятся к семейству полосатых. Их отличают складки, идущие от нижней челюсти к животу. Они растягиваются, словно мехи, что позволяет китам набирать в рот огромное количество воды с пропитанием. Полосатые киты не умеют петь, зато их басистое ворчание и крики слышны в воде на сотни километров. (По мнению некоторых исследователей — на тысячи.) Но сверхдальней связи китов сегодня мешают низкочастотные шумы корабельных моторов. Что, конечно, осложняет жизнь гигантов.

Второе место среди гигантов прочно удерживают финвалы, достигающие 22 метров в длину. Это единственные млекопитающие на земле с асимметричной окраской. Правый бок у финвала — белый, а левый — черный. Одни исследователи убеждены, что финвал кружит вокруг косяка рыбы по часовой стрелке, повернувшись к нему белым боком, и таким образом сгоняет перепуганную рыбешку в плотную массу, которую затем и проглатывает. Другие специалисты считают, что, наоборот, финвалы плавают вокруг стаи рыб против часовой стрелки и черная окраска левого бока служит ему прикрытием. Проведенные аэросъемки показали, что киты при охоте плывут и по часовой стрелке, и против. Загадка не разгадана.


ГИГАНТЫ РАСКРЫВАЮТ ТАЙНЫ

Большинство морских млекопитающих отличаются замечательной понятливостью, это особенно относится к китообразным; их обучаемость и сообразительность поражают исследователей. Некоторые ученые считают даже, что мозг китообразных по своим возможностям ближе к человеческому, чем мозг любого другого животного. Такой высокий уровень мышления вместе с дружелюбным нравом ставит китообразных в ряд наиболее популярных и интересных для науки животных.

Киты многое дали людям: китовый ус и спермацет, китовый жир и костную муку. А в последнее время изучением китов серьезно заинтересовались медики.

Так, офтальмологи занялись расследованием глаз китов. Во-первых, потому, что громадный глаз кита позволяет рассмотреть в увеличенном виде детали, которые трудно уловить, изучая глаз человека и других млекопитающих. А во-вторых, при нырянии на большие глубины глаза китов выдерживают колоссальное давление воды. Что здесь придумала природа? Не поможет ли разгадка избавить от страданий больных глаукомой — болезнью, связанной с нарушением внутриглазного давления?

Кардиологи, изучая строение сорока восьми килограммового сердца финвала, обнаружили шунт (соединение) между двумя крупными артериями. Это соединение обеспечивает надежную защиту от закупорки сосудов, а следовательно, и от инфаркта. Имеются данные, что киты почти не подвержены инсультам — кровоизлияниям в мозг. Обследовав их коронарные сосуды, медики не обнаружили на их стенках жировых отложений, которые часто встречаются у больных инсультом.

Кровеносная система кашалотов отличается такой особенностью — венозная и артериальная сети расположены параллельно. Артерия и вена могут проходить вплотную друг к другу. А в других частях тела мелкие вены окружают артерию, как оплетка жилу кабеля. Но в обоих случаях теплая кровь, текущая к поверхности тела, отдает часть тепла остывшей венозной крови, то есть в организме кита сохраняется часть тепловой энергии. Значение такой экономии трудно переоценить.

Китами интересуются не только медики. Еще недавно все специалисты считали, что скорость, с которой плавают киты, не поддается теоретическому обоснованию. Что по всем физическим законам у кита попросту не должно хватать мускульной энергии для такого быстрого движения под водой. Они строили жесткие модели из дерева, буксировали их под водой, потом вычисляли необходимые затраты энергии, а потом пожимали плечами: необходимые затраты никак не соответствовали возможностям китов. Разгадка наступила, когда была создана модель кита с эластичным наружным слоем, имитирующим кожный и жировой покровы этого животного. Выяснилось, что именно эластичность наружных тканей и позволяет китам развивать поразительные скорости. Они чутко реагируют на давление обтекающей их воды, и потому при движении животного не возникает завихрений.

Могучие движения плавника, постоянное колебание всего наружного покрова, уменьшающее трение о воду, позволяют китам в минуты опасности развивать скорость до двадцати узлов. И подолгу плыть без особого напряжения со скоростью шесть узлов. Вот почему кашалоты плавают со скоростью, недоступной механическим аппаратам, созданным человеком. Разумеется, если исходить из соотношения затрачиваемой на движение энергии. Абсолютная скорость наших плавучих и подводных средств, конечно, выше. А вот КПД… Тут нам за китами не угнаться. А поучиться есть чему.


ТРЕВОГА

Все виды обитающих на нашей планете животных — неисчерпаемая сокровищница знаний для человека. Сложность организма животного — величайшая ценность и чудо. Ни одна самая оснащенная лаборатория мира не сумеет сконструировать и изготовить даже одного волоска с морды морской коровы. А последняя стеллерова корова была забита дубинками всего через двадцать семь лет после открытия Командорских островов. Мы так и не узнаем ее тайн. Неужели такая же судьба ждет и синего кита?

Мировая популяция синих китов уменьшилась за 30 лет в сто раз — до 1 тысячи голов. По мнению некоторых ученых, самого крупного из китообразных уже попросту поздно спасать. Он обречен. Вот почему биологи настойчиво требуют значительно уменьшить промысел китов.

Гренландские киты в западной части Арктики были обнаружены в 1848 году, а уже к 1910 году стадо уменьшилось на 20 тысяч животных. Сейчас их в этом районе всего 2200. Малочисленность принесла этому виду китов грустную славу самого редкого из самых крупных животных. А они действительно крупные — достигают 18 метров в длину, весят более 60 тонн.

Их близкий родственник гладкий кит раньше встречался в океане повсеместно. Китобои некоторых стран называли его «подходящим китом». Медлительный безобидный гигант, туша которого к тому же обладает хорошей плавучестью, был действительно подходящим объектом для истребления. Теперь единственная известная популяция этих китов обитает у южного побережья Аргентины и насчитывает всего 3 тысячи особей.

Загрязнение океана нефтепродуктами, накапливание в организмах морских животных радиоактивных и токсичных веществ — все это пагубно отражается на существовании животного мира океана. И все это результаты деятельности человека. Результаты, над которыми необходимо серьезнейшим образом задуматься.


ФЛАМИНГО И КИТ

Что общего между стройной птицей и гигантским обитателем глубин? На поразительное сходство в строении рта птицы и кита недавно обратили внимание зарубежные зоологи.

Ученые считают, что здесь наглядно проявилась так называемая эволюционная конвергенция, процесс, в результате которого у неродственных видов животных в сходных условиях жизни развиваются одинаковые приспособления.

Ученые полагают, что на протяжении веков у фламинго и китов вырабатывалось похожее строение ртов, потому что пищу им приходилось добывать оригинальным способом: процеживать большие объемы воды, отфильтровывая мелких животных, которыми они питаются. В качестве фильтра, задерживающего маленьких красных рачков — криль, киты используют тонкие роговые пластины, известные под названием китового уса. В клюве фламинго имеются такие же пластины, сквозь которые он процеживает воду и ил в поисках мелких водных растений и животных.

В процессе конвергенции и фламинго и кит получили узкую верхнюю челюсть, большой, толстый мясистый язык, помещающийся в глубокой нижней челюсти, и сложный изгиб челюстей, что обеспечивает большую поверхность фильтрования. Язык используется в качестве поршня. При движении его по пластинам вода быстро проталкивается сквозь фильтр.

Одинаковое строение рта у фламинго и китов заставляет думать, что подобная конструкция фильтра чрезвычайно эффективна. Ученые полагают, что стоит внимательнее присмотреться к этим созданиям и, может быть, использовать идеи, подсказанные природой, при проектировании промышленных фильтров.


РЕДКИЙ ХИЩНИК

Красные волки, занесенные в Красную книгу, — один из самых редких животных современной фауны. За последние десятилетия отмечены лишь единичные встречи с ними. Да и с начала века в естественной обстановке их видели весьма редко. К примеру, известный исследователь Дальнего Востока В. Арсеньев во время всех своих экспедиций с 1906 по 1927 год встретил красного волка лишь однажды на реке Горелой. По последним данным, общая численность «рыжих собак» в Советском Союзе не превышает сотни особей.

В горах Средней Азии на территории СССР большую часть года красные волки держатся в альпийском и субальпийском поясах. Зимой спускаются в лесную зону. На Дальнем Востоке они живут преимущественно в горах и предгорьях, поросших хвойной тайгой или лесами маньчжурского типа. Некоторые исследователи полагают, что красные волки спускаются и к побережью Тихого океана. В Восточной и Средней Сибири их видели на гольцах, в таежных распадках, долинах рек, куда они приходили зимой в поисках пищи.


ЗУБАСТАЯ УЛИТКА

Общеизвестно, какой вред наносит порой растениям садовая улитка. Как это ей удается? — удивляются иногда, Природа наградила ее весьма эффективным «орудием» — эта улитка имеет 135 рядов зубов, расположенных на языке. Каждый ряд содержит по 105 зубов, а в сумме 14 175! Вполне можно справиться.


ТАК ВЕРБЛЮД ЭКОНОМИТ ВОДУ

Долгое время ученые не могли получить удовлетворительного ответа на эту загадку. Лишь недавние исследования позволили установить, что «инструментом» экономии воды, которым пользуется животное, является… его нос.

Точнее, особая слизь, вырабатываемая организмом верблюда, когда тело его обезвожено. Эта-то слизь и «всасывает» водяные пары, идущие вместе с воздухом из легких при выдохе.

Специалисты оценили значение этой субстанции, изучая структуру верблюжьего носа, напоминающего свиток папируса общей площадью в тысячу квадратных сантиметров. Для сравнения: у человека соответствующая площадь составляет лишь 12 квадратных сантиметров.


ВЛИЯНИЕ СВЕТА

Выход ягнят при зимних окотах можно увеличить на 20 процентов, если помещать маток в затемняемые днем на несколько часов овчарни в течение семи недель.

Чтобы получить наибольший приплод, говорят ученые, длительность светового дня летом не должна превышать 11 часов. Для этого овец за две недели до осеменения стали загонять в затемненные помещения примерно в 16 часов и выпускали их оттуда после того, как наступала ночь.

При таком световом режиме, соблюдаемом в течение почти 50 дней, от овец получали такой же хороший выход ягнят, как и при осеменении маток осенью и при весенних окотах.


КИСЛОРОДНЫЙ КОКТЕЙЛЬ

Этот эксперимент начался в 1975 году в лаборатории химизации Министерства сельского хозяйства СССР.

Отправной точкой послужила идея о том, что молодым животным, находящимся в стойловых условиях, где постоянно ощущается избыток аммиака и углекислого газа, необходимо компенсировать кислородное голодание.

Эксперимент проходил в подмосковных совхозах в течение трех лет на 38 опытных и контрольных группах поросят в возрасте от 25–60 дней и до четырехмесячного возраста (дальше кислородный «допинг» действует по инерции). Максимальные привесы опытной группы, получавшей водо-кислородную смесь, оказались за два с половиной месяца на 10–12 килограммов выше. К тому же мясо опытных поросят имело меньше жиров, но больше протеина.

Сейчас стоят две задачи: создать надежную и простую в эксплуатации конструкцию оборудования и оптимальный способ обеспечения животноводческих ферм кислородом. Первая близка к разрешению — разработано несколько конструкций смесительной аппаратуры, из которых выбрана наиболее подходящая. Что касается второй, то применение тяжелых баллонов неэкономично: нужны механизмы для погрузки и разгрузки. Поэтому предпочтение отдано установке для получения воздуха, обогащенного кислородом, непосредственно на ферме.


ХОНОРИК — ГИБРИД ХОРЬКА И НОРКИ

Зверька, который поселился в вольерах лесопарковой зоны Новосибирска (Западная Сибирь), раньше нельзя было встретить в природе.

Гибрид хорька и норки вывели сибирские биологи.

От хорька хонорик унаследовал белую маску на мордочке и стремление копаться в земле. Вместе с тем он, как и норка, с удовольствием плавает, ныряет, разыскивая под водой пищу. Оригинальна шубка зверька: густой коричневый мех выглядит на мягкой светло-коричневой подпуши очень нарядным.

При выведении хонорика ученые воспользовались методом отдаленной гибридизации. Именно таким путем были получены в свое время зубробизоны, мулы, ряд других животных.


«БОЛЕЕ ОПЫТНЫЕ» ЦЫПЛЯТА

Цыплята, только что выведенные наседкой, лучше информированы, они быстрее приспосабливаются к условиям окружающей среды и более развиты, чем их инкубаторные сверстники.

К такому заключению пришли биологи, изучавшие характер связи между наседкой и еще не вылупившимися птенцами. В ходе исследований удалось установить не менее 11 различных звуковых сигналов (постукивание клювом и писк), которыми начинают пользоваться наседка и цыпленок за двое суток до его появления на свет.


ПОЧЕМУ НЕ БОЛИТ ГОЛОВА У ДЯТЛА?

Почему дятел, часами непрерывно долбящий клювом по деревьям, не сходит от этого с ума? А ведь скорость клюва в момент удара может составлять 2000 километров в час! Как же выдерживает крохотный — величиной со спелую вишню — мозг дятла бесконечно повторяющиеся сотрясения без вредных для себя последствий?

Ведь продолжительность каждого удара всего-навсего одна тысячная доля секунды, а перегрузка при каждом ударе достигает 1000 д. Напомним, 1 д — сила, необходимая для преодоления земного притяжения, а космонавты при старте космического корабля испытывают перегрузки до 4 д. Спасают дятла, оказывается, мышцы шеи. Они столь замечательно скоординированы, что, когда дятел наносит удар, его голова и клюв движутся по абсолютно прямой линии.

Если удар будет нанесен хотя бы под небольшим углом, он приведет к разрушению тканей мозга. Именно отсутствие кивающих и вращательных движений головой, как выяснилось, и служит столь надежной защитой мозгу дятла. Очевидно, это необходимо учитывать при усовершенствовании конструкций защитных шлемов.


КРЫЛЬЯ — СОЛНЕЧНЫЕ БАТАРЕИ

Как возникли крылья у насекомых? На сей счет существует немало теорий. Некоторые ученые считают, что первые крылоподобные образования насекомых представляли собой небольшие отростки, служащие для сбора солнечной энергии, необходимой для нагревания тела, когда температура окружающей среды становилась низкой.

Широко известна гипотеза «летающих рыб», считающая, что крылья произошли от клапанов, подобных жаберным, и гипотеза белок-летяг, утверждающая, что прообразом крыльев послужили небольшие плоские перепонки. Так или иначе, но известно, что «пра-крылья» (называемые еще грудными долями) выросли во время палеозойской эры и служили для весьма коротких перелетов.

Чтобы проверить гипотезу относительно «пракрыльев», служащих для нагревания тела, ученые провели остроумный эксперимент. Они выбрали тип бабочки, крылья которой могут уменьшаться приблизительно до размеров грудных долей доисторических насекомых. С помощью крохотного термометра, вставленного в грудную клетку насекомого, измерялась температура, а с помощью обычной 150-вольтной лампы создавалось освещение — как в обычный солнечный день. В результате этого выяснилось, что благодаря грудным долям тело насекомого получает на 55 процентов тепла больше, чем без них. Дополнительное тепло дает насекомому больше энергии и позволяет ему дольше жить, успешнее спасаться от хищников и продолжать род.

С ростом «пракрыльев» их нагревательная способность увеличилась не слишком сильно. Наиболее оптимальная длина крыльев в этом смысле равна 10 миллиметрам. Достигнув этих размеров, крылья позволили насекомым парить в воздухе.


У БАБОЧКИ — РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Бабочки могут совершать перелеты на сотни и тысячи километров — их миграцию из Европы в Америку обнаружил еще Колумб. При этом скорость полета у некоторых бабочек превышает пятьдесят километров в час. Но дело в том, что летает дневная бабочка совсем не так, как, скажем, большинство насекомых или птицы.

Вспыхнул экран, и на нем появилась бабочка-лимонница, медленно, словно нехотя шевелящая двумя парами своих крыльев, — ее снимали скоростной кинокамерой. Крылья поднимались все выше и выше, пока, наконец, не «склеились» в пластинку. Потом так же неторопливо пошли вниз, распахнулись во всю ширь и снова «склеились» под брюшком.

Именно это «склеивание» и смущало ученых. Как вообще такая бабочка может держаться в воздухе, если почти треть времени взмаха у нее сложены крылья? Ведь в таком положении они не создают подъемной силы, и бабочка тут же должна была терять высоту. Почему же этого не происходит?

Поиском ответа на этот вопрос и занялись ученые Института эволюционной морфологии и экологии животных имени А. Н. Северцова Академии наук СССР. В лаборатории морфологии беспозвоночных под руководством доктора биологических наук В. Свешникова были проведены сотни экспериментов, во время которых полет бабочки-лимонницы снимали со скоростью 2000 кадров в секунду. Потом исследователи десятки раз анализировали заснятые пленки, делали отпечатки с отдельных кадров, меняли ракурс съемки. И рапидная съемка позволила им обнаружить то, чего не знали до сих пор: при «склеивании» крыльев как в верхнем, так и в нижнем положении бабочка не только не теряла высоты, а, наоборот, нередко рывком увеличивала скорость и взмывала вверх. За счет чего?

Стрекочет кинопроектор, и поднимающиеся крылья бабочки на экране сходятся все ближе. Вот они уже почти слились в узкую вертикальную черту. Но что это? Между задними крыльями над телом насекомого отчетливо виден канал почти с правильным овальным сечением.

Вот это и есть реактивный двигатель. Удалось установить, что в полете бабочка весьма хитроумно смыкает крылья. В какой-то момент передняя пара образует своего рода воздухозаборник, а задняя — реактивный канал. Самое же интересное происходит тогда, когда он заполнится воздухом. Задние крылья продолжают сближаться, но не одновременно всей поверхностью, а как бы волной: сначала сходятся передние кромки, а уже потом — задние. Благодаря этому крылья с силой выталкивают «зажатую» между ними порцию воздуха из «сопла», создавая тем самым реактивную струю…

Обычно эта струя направлена под небольшим углом вниз. Поэтому часть реактивной силы удерживает бабочку в воздухе и даже помогает набрать высоту, а другая часть сообщает ей скорость. Когда же бабочка разводит крылья, делая очередной взмах, канал распадается. Но теперь уже он и не нужен — она летит на машущих крыльях.


ЗАЧЕМ ПЧЕЛЕ ЗАРЯД?

Когда рано утром пчела покидает улей, она слегка наэлектризована, несет слабый отрицательный заряд. Но вскоре в ходе полета он сменяется у нее на положительный. Причем его величина к полудню постепенно нарастает, достигая максимума (1,5–1,8 вольта) в хороший солнечный день.

Положительный электрозаряд приносит пчелам немалые выгоды. Ведь растения и их цветы тоже наэлектризованы, но в отличие от пчел они заряжены отрицательно. Поэтому при подлете пчелы пыльца не разлетается, а прочно притягивается и хорошо удерживается на ее мохнатом тельце. В итоге пчела больше запасает корма и попутно лучше переопыляет растения. При этом, уменьшая отрицательный заряд оставшейся пыльцы, пчела как бы предупреждает своих подруг о взятии нектара с цветка, на котором она побывала.

Электрический заряд возвратившейся в улей пчелы — это также своеобразная информация о расположении места взятка, расстоянии до него. Ведь чем длиннее ее маршрут, тем больший заряд она приобретает. Путем измерения электростатических зарядов пчел можно будет точнее определить время перевозок ульев с одного места на другое для лучшего переопыления садов, овощных плантаций, семенников клевера, посевов других культур.


ЭЛЕКТРИЧЕСКИЙ ЯЗЫК ПЧЕЛЫ

Летом с первыми лучами солнца ульи покидают лишь отдельные пчелы. Остальные же — в семье их обычно тридцать и более тысяч — ждут возвращения «разведчиц», которые проинформируют, куда предстоит коллективный вылет за нектаром. Как передается такая информация другим пчелам?

На этот вопрос удалось ответить доктору биологических наук Е. Еськову, заведующему кафедрой зоологии Рязанского педагогического института.

«Язык» пчел основан на колебательных движениях их тела, сопровождающихся пульсирующими звуковыми сигналами. Именно так насекомые передают информацию о направлении полета, расстоянии. А давая своим сестрам пробы принесенного корма, сообщают о его качестве, запахе. Сопоставив сведения, полученные от разных сигнальщиц, семья определяет, куда лететь, где нектар и пыльца лучше.

Пчела — это живой генератор и приемник статического электричества. Электрический заряд возникает при трении пчел о воск, дерево рамок, летка. Однако для формирования и передачи обширной информации такого заряда недостаточно. Обратив внимание на раскачивание брюшка, ученые установили, что именно таким образом пчела «сгущает» электрические заряды, усиливая их.


ФАРМАЦЕВТЫ ИЗУЧАЮТ ЯД СКОРПИОНА

Собирать ценный для фармацевтов продукт — яд скорпиона — научились бакинские ученые. Они используют в качестве раздражителя электрические импульсы и добиваются таким образом многократного выделения яда.

Действие яда скорпионов пока сравнительно мало изучено. Известно только, что еще в глубокой древности его с успехом применяли для лечения расстройств нервной системы. Сейчас в исследовательских учреждениях СССР ведется изучение действия яда на организм человека для разработки новых лекарственных препаратов.


ПАУТИНА И «ПАДАЮЩИЕ» ДОМА

Моллюски, раковины, стебли растений — ранее «заповедная зона» ботаников и зоологов — теперь интенсивно изучаются архитекторами-биониками. Их цель — взять и использовать все лучшее, что создано природой за миллионы лет эволюции. В нашей стране в ЦНИИ теории и истории архитектуры создана специальная лаборатория, главное направление которой — решить, насколько удобна, красива, рациональна будет для архитектуры та или иная форма живой природы.

Если сравнить коэффициент стойкости обычного стебля пшеницы и самого высокого свободно стоящего сооружения в Европе — Останкинской телебашни, то у последней он раз в 20 меньше, чем у стебля злаков.

Невольно напрашивается вопрос: как использовать те принципы, которые лежат в основе «строительства» живой природы, для нужд архитектуры и строительства?

В живой природе постоянно действует принцип максимального переключения работы конструкции на растяжение в стержне. Он-то и функционирует в целом ряде экономичных конструкций.

Способность природных паутин выдерживать большие растягивающие усилия самым оригинальным способом использовал архитектор Г. Борисовский в проекте «падающих» домов.

Представьте себе две поставленные на достаточно большом расстоянии железобетонные колонны. Заставим их падать в противоположные стороны друг от друга, но между ними подвесим прочный стальной канат, а основание колонн зафиксируем шарнирами. Канат удержит колонны от падения, а сам натянется как струна. Подпорные колонны приобретут устойчивость, канат превратится в жесткую конструкцию. Если заставить «падать» два ряда колонн (или две стены), а между ними натянуть по этажам сетки}или мембраны, то они натянутся и превратятся в междуэтажные перекрытия.

Паук также рассчитывает на натяжение своей паутины наклонными (падающими) ветвями, к которым прикреплены ее нити.

На станции «Северный полюс-25» в апреле 1981 года за 40 минут был установлен доставленный на самолете складывающийся дом-гостиница на 6 человек, выполненный из гибких, податливых конструкций.

На такой тип дома очень много заказов от оленеводов и нефтяников. И не случайно. Такой домик не только удобен, но и экономичен. Сравним его с типовым домом тоже на 6 человек. Домик, построенный на основе применения бионики, стоит 650 рублей, а типовой — 1700. Типовой весит 2 тонны, а с применением бионики—180 килограммов. На основе этой конструкции сейчас проектируется здание с большими пролетами для овоще- и фрукто-хранилищ, укрытий техники и ремонтных мастерских для Севера.


ЗАПОВЕДНИКИ ПОЛЕЗНЫХ НАСЕКОМЫХ

Свыше полутора миллионов видов насекомых населяют земной шар. Около 20 процентов из них считаются полезными и только 2 процента — вредными. Насекомые участвуют в образовании почвы. Непосредственно от крылатых опылителей зависят размножение да и само существование цветковых растений.

Для сохранения и увеличения численности многих видов полезных насекомых в СССР создано более трех десятков специальных заповедников. Первый из них был организован в 1969 году на площади 6,5 гектара среди диких трав, деревьев, кустарников в Омской области в Сибири.

Заповедники полезных насекомых — прежде всего резервации опылителей и энтомофагов. Отсюда они переходят на окружающие поля и подавляют популяции вредителей.

Сейчас создается еще один заповедник. Около двух гектаров территории Иссык-кульского государственного заповедника в Киргизии станут местами обитания диких пчел, шмелей и других насекомых.


БЕЗВРЕДНЫЙ ЯД

«Не помогает!» — нередко сетуем мы, вступив в борьбу с домашними насекомыми с помощью препаратов бытовой химии.

А «секрет» прост: до последнего времени химикам не удавалось синтезировать вещество, беспощадное к насекомым и безвредное для человека. А между тем в природе такое вещество существует. Это перетрин, содержащийся в цветах долматской или кавказской ромашки, которые появляются в мае.

Он лишен цвета и запаха. А его добавка в дуст в количестве всего 0,5 процента дает прекрасные результаты. Но возможности для широкого применения этого сложнейшего вещества появились лишь после того, как химики научились получать] его синтетическим путем. Сейчас на! базе перетрина начато производство таких препаратов, как неопин (для борьбы с тараканами) и неорипат.


ФАБРИКА ЖИВОГО ЛЕКАРСТВА

Часами выстаивать в болотной хляби, бить по ней палкой, привлекая на шум пиявок, а затем голыми руками собирать их в бязевые мешки с влажной землей — признаться, я думал, что, кроме Дуремара из «Золотого ключика», никто бы этим промыслом и не занялся.

Но оказалось, что эта профессия была известна еще во времена Авиценны. Многие тяжелые заболевания врачи древности лечили с помощью целебных пиявок, и поэтому труд ловцов до сих пор считается нужным и важным для здоровья людей. Самые неуступчивые болезни — радикулит, гипертония, болезни сердца и глаз поддаются течению, если «принять» это живое — лекарство. Однако болота осушаются, найти пиявок в необходимых количествах стало трудно. Естественный улов становится с каждым годом все меньше- меньше. Но выход был найден.

Советские биологи предложили метод искусственного выращивания пиявок. Так, в Подмосковье, неподалеку от станции Удельная, появилась единственная в своем роде биофабрика живого лекарства.

Производственный цех уставлен огромными ящиками из стекла, похожими на аквариумы, где помещены тысячи пиявок. Это уже «готовая продукция». И выглядят эти червячки далеко не безобидно. 300 зубов каждого внушают некоторые опасения.

Оказывается, лечебный «секрет» пиявок имеет расшифровку. В считанные секунды голодная пиявка прогрызает своими зубчиками кожу больного. И, высасывая из этого места кровь, одновременно выделяет в организм лечебный препарат герудин. Он обладает исключительными свойствами заживлять десятки человеческих недугов.


ЯЗЫК ЗАПАХОВ

Недавно зоологи, обеспокоенные исчезновением целых видов животных, попытались создать теоретическую модель млекопитающего, у которого больше всего шансов выжить в наш индустриальный век. По всем данным, такое животное должно быть сравнительно мелким, жить на обширной территории, быстро плодиться и не представлять никакой ценности для человека. Оказалось, что этим требованиям лучше всего отвечает… вездесущая крыса-пасюк.

Крысы, наверное, одни из самых распространенных животных. Есть страны, где они стали настоящим бедствием. Неожиданные замыкания в электросистемах и пожары, рушащиеся источенные деревянные постройки, вспышки эпидемий грозных болезней — во всех этих и многих других бедах часто повинны наши длиннохвостые соседи. Более того, каждый серый разбойник за год съедает около пятнадцати килограммов зерна, мяса, круп и других продуктов. А портит в десять раз больше. Вот почему борьба с крысами остается одной из важнейших задач…

Сложности этой борьбы известны далеко не всем. Казалось бы, крысы грызут практически все: кожу, резину, дерево, пластмассы. Но с поразительной избирательностью не хотят есть отравленную приманку. Почему? Наблюдения показали, дело не только в природном инстинкте этих животных, но и в высокой организации крысиного «общества». Когда крысы находят подозрительную приманку, попробовать ее посылают самого захудалого собрата, стоящего на низшей ступеньке иерархии.

Столь же хитро крысы обходят стороной и крысоловки. Не все, конечно, но попадают в них обычно самые неопытные. А матерые самцы и беременные самки почти не становятся добычей этих хитрых приспособлений. Что помогает им избежать опасности?

Анализируя причины, ученые пришли к выводу, что виноват запах крысоловки. А точнее — отсутствие нужного запаха. У крыс, как и у многих других живых существ, язык запахов довольно богат и служит важным средством обмена информацией.

Язык запахов? Что скрывается за этим понятием? Всем известно, что по запаху хищники отыскивают и преследуют добычу, узнают о грозящей им опасности. А бабочки, например, в брачный период регулярно выбрасывают облачка специального пахучего вещества, чтобы привлечь самца. Но можно ли считать такие сигналы даже подобием языка? Ученые считают: да, можно. В этом их, в частности, убеждают эксперименты с так называемой черепашкой — одним из видов клопов.

У этого существа запах играет не только отпугивающую роль. Если на черепашку чуть надавить, то ее железы тут же выделяют крохотную дозу пахучего вещества, называемого феромоном. Но и этой дозы оказывается достаточно, чтобы остальные собратья уже не ползли туда, где находится попавшаяся черепашка. Правда, ученые считают, что услышанный ими запах еще не обозначает опасность, а скорее лишь равнозначен сообщению: «В этом месте нас собралось много, и на обильный корм надеяться не приходится».

Но стоит на черепашку надавить чуть сильнее — и концентрация феромона в воздухе возрастет настолько, что уже служит настоящим сигналом опасности. А если ее совсем раздавить, то большая концентрация феромона будет означать подлинный вопль ужаса, который можно условно передать словами: «Меня убивают!» В этом случае все черепашки в округе замирают в надежде, что злая участь их минует.

Как видите, одно и то же вещество, но в разной концентрации может передавать различную информацию. Правда, в случае с крысами задача была несколько сложнее. Сначала ученые искусственно выделили феромон, который условно можно оценить как сигнал: «Я здесь был». Когда им обработали крысоловку, она стала работать гораздо эффективнее. Но ученых это не удовлетворило, и они попытались найти другой феромон — типа: «Я здесь был, и мне здесь было хорошо». Результаты получаются обнадеживающие: даже самые бдительные крысы попадают в ловушку.

Изучение языка запахов уже приносит реальные плоды в деле борьбы с вредителями. Скажем, чтобы лишний раз не распылять ядохимикаты, надо знать: есть ли необходимость в этой крайней мере? Или, иными словами, нужно определить: много вредителей в данной местности или мало? Для этого ученые синтезировали целый ряд феромонов, привлекающих тех или иных насекомых. Ими обрабатывают специальные ловушки, стенки которых обмазаны клейким составом. Родной запах неудержимо влечет сюда насекомых. Поэтому, подсчитав, сколько их попало в ловушку за определенное время, можно решить, стоит ли обрабатывать местность ядохимикатами.

Знание языка запахов, или, как говорят ученые, законов химической коммуникации, помогает создавать самые разные методы борьбы. Например, дин из них состоит в том, что искусственно синтезированный феромон гзмки разбрызгивают в воздухе. И при — эком обилии ложных «целей» самцы же не могут ее найти. Но исследователи связывают свои работы не только сельским хозяйством. Они считают, что запах может многое рассказать об индивидуальных особенностях того или иного организма.

Взять хотя бы тех же домовых мышей. Когда мышь встречается с особью незнакомой породы, то приходит в ярость и начинает гонять непрошеную гостью, норовя ее убить. Но если такие мыши пробыли долгое время в одной клетке, то, встретившись потом, они проявляют вполне дружеские чувства. Значит, есть какие-то вещества которые помогают им узнавать друг друга. Или обнаруживать соперника. Скажем, если самец ушел по своим мышиным делам, а к самке в его отсутствие подходил чужак, то хозяин, вернувшись, принимается нещадно тузить подругу. И ярость его не угасает течение нескольких часов — пока чужой запах не выветрится.

Пока исследователям еще до конца неясны все тонкости этого языка запахов. Но они не теряют надежды создать «словарь», с помощью которого можно будет управлять поведением животных и насекомых.


ПРОМЫШЛЕННЫЕ «ПРОФЕССИИ» МИКРООРГАНИЗМОВ

Около половины всего заготавливаемого зерна идет как корм на «животноводческие фермы. Фуражное зерно можно расходовать значительно экономнее, если повысить в нем содержание белка и других кормовых добавок, улучшающих обмен веществ. Это сейчас одна из основных забот промышленной микробиологии. У нас в стране ежегодно выпускается свыше миллиона тонн микробных белковых препаратов, содержащих более 50 процентов протеина, что позволяет повысить питательную ценность почти 20 миллионов тонн зерновых кормов.

В основном это дрожжи, выращиваемые на различных дешевых питательных средах. В будущем намечено довести производство дрожжей до нескольких миллионов тонн в год. Добавка тонны дрожжей в зерновой рацион птиц позволяет дополнительно получить 1–1,5 тонны мяса или 25–30 тысяч яиц, в свиноводстве — 0,4–0,6 тонны мяса, сохраняя при этом около 5–7 тонн фуражного зерна.

Люди издавна пользовались «услугами» микробов, например, когда варили пиво, сбраживали вино или простоквашу, выделывали кожу, но делали это вслепую. Сейчас, когда микробиологи научились управлять невидимыми глазу «работниками», возможности их использования намного расширились. Пищевые аминокислоты становятся обычными приправами, как соль, горчица.

Одна из незаменимых аминокислот — лизин при добавлении в хлеб повышает его питательность, глютаминовая кислота улучшает вкусовые качества и т. д. «Обученные» бактерии могут вырабатывать жиры, близкие по составу к подсолнечному, кукурузному, касторовому и даже оливковому, пальмовому и другим маслам.


ЖИВЫЕ ИНДИКАТОРЫ

Индикаторы — сигнальные или измерительные приборы, созданные человеком и широко применяемые в технике. Но есть индикаторы и у природы. Живые. И очень чувствительные.

Биоиндикаторы живут повсюду: в почве, в воде, в воздухе. И многие из них нам хорошо и давно известны. Например, собака лаем предупреждает о приближении незнакомого человека. Улитка прячется в свой домик перед ненастной погодой. А ветвистоусый рачок-дафния, обитатель озер, прудов, тихих заводей, чуток к любому изменению химического состава воды.

Биоиндикаторы ныне часто используются при наблюдениях за изменением природной среды. Их называют еще тесторганизмами. Новое название они получили в связи с тем, что используются в научных опытах — биотестах.

Вот уже несколько лет с ранней весны до осени на азовских лиманах проводят исследования ученые Всесоюзного научно-исследовательского института природы и заповедного дела. Здесь они совместно со специалистами ВНИИриса анализируют состав воды рисовых чеков, сбросных каналов и самих лиманов. Контрольные исследования проводятся разными методами. Рисоводы определяют качество воды с помощью гидрохимических анализов. Природоведы — методом биотестирования.

Первые берут пробы воды и затем в течение довольно длительного времени на сложном лабораторном оборудовании определяют химический состав сбросных вод. Вторые же все исследования проводят с использованием живых организмов. Делается это так. В колбы набирается вода из различных источников. Затем туда выпускают дафний. И…

При контроле за качеством сбросных вод большое значение имеют данные о применяемых пестицидах, их стойкости в водной среде и биологической активности.

…Так что же происходит с дафниями в колбах с пробами воды? В первой они погибли через несколько мгновений. Вода, взятая из отстойника коллектора, оказалась сильно загрязненной. Во второй живые организмы просуществовали только 24 часа. Эта проба воды взята из рисовых чеков одного из рыбоводческих хозяйств. В третьей колбе, в воде, взятой из сбросного канала, рачки жили 48 часов. И только в последней колбе с дафниями как будто бы ничего не произошло даже после 96-часового обитания в исследуемой воде из Курчанского лимана Азовского моря. Но ученые при этом заметили необычное поведение дафний. Периоды активного их движения сменялись неподвижным состоянием, явно ненормальным было и потомство дафний.

Эксперименты, длившиеся пять дней, показали различные степени загрязнения вод, сбрасываемых с рисовых полей. Они показали, где, как, какими! веществами загрязняется вода. Полученные данные будут использованы в разработке автоматизированных устройств для регистрации токсичности водной среды.

Дафнии — это только один из множества живых организмов, которые] сейчас используются для биотестирования. Известно, например, что речные улитки накапливают присутствующий в воде марганец и свинец, в теле хищного жука-гладыша накапливается цинк, а жук-плавунец отдает предпочтение меди. Чуткими индикаторами являются и многие растения.


РАБОТАЕТ ТО, НЕ ВИДИМ ЧТО

Неподалеку от Свердловска, в поселке Дегтярка, работает удивительный металлургический завод. Нет на нем ни доменных печей, ни мартенов. Не слышно в его цехах ни грохота, ни шума. Вокруг завода стоит ничем не нарушаемая тишина.

Огонь, с незапамятных времен верно служивший человеку при выплавке металла из руд, получил полную отставку. Грозное, яркое пламя — неизменного помощника металлургов — заменили… бактерии!

Медную руду, добываемую из ближайшего рудника, обрабатывают простой водой. На заводе есть подземный ход, в котором живут и размножаются бактерии с длинной «фамилией» Тио-5-аииллус феррооксиданс. Вода из пруда по трубам поступает к руде. Под действием бактерий она превращается i раствор сине-зеленого цвета — в медный купорос. Его подают в чаны, где на дне лежат листы железа. Между медным купоросом и железом происходит химическая реакция. Железо растворяется, а медь в виде розоватого крошка выпадает в осадок.

Вот так невидимые работники помогают извлекать металл.

Еще триста лет назад испанские горняки на медном руднике Рио-Тинто умели добывать медь без огня и дыма, пользуясь водой. Они тогда и не подозревали, что в обычной воде кишмя кишат бактерии.

Теперь металлурги разных стран по достоинству оценили способности невидимок. А недавно медь с помощью бактерий стали получать из отвалов, горы которых загромождали территории металлургических заводов. И это тоже еще, вероятно, не все, на что способен Тиобациллус…


ЖИЗНЬ НА СНЕГУ

На нашей планете, как подсчитали специалисты, есть свыше двух миллионов различных насекомых, то есть значительно больше, чем всех других животных и растений, вместе взятых. Среди них и хорошо известные нам мухи, комары, различные бабочки, пчелы и такие, которых не всегда сумеет назвать даже опытный энтомолог.

Насекомые не имеют постоянной температуры тела, поэтому они целиком и полностью зависят от состояния внешней среды. И, несмотря на то, что отдельные виды приспособились к строго определенным условиям жизни, большинство из них все-таки теплолюбы.

Среди представителей этого класса есть и такие, которых можно увидеть зимой — не в отапливаемом помещении, а в суровой природной обстановке. Чаще других встречаются коллемболы, которых в народе называют «снеговыми блохами». Название удачное, ибо передвигаются они своеобразно. На конце брюшка у них особый орган — «прыгальная вилка». Быстро расправляя «вилку», коллембола отталкивается от поверхности и делает резкий прыжок, оставаясь точно на том месте, куда приземлилась. Через особый орган насекомое выделяет капельку липкой жидкости, которой оно каждый раз приклеивается. Коллемболы — очень мелкие членистоногие, они встречаются во всех уголках земного шара, в том числе в Арктике и Антарктиде.

На лесных полянах, поросших мхом и лишайниками, можно увидеть насекомых размером в 3–4 миллиметра, очень напоминающих маленьких травяных кобылок. Это ледничики зимние. За один прыжок ледничик может преодолеть расстояние в 50 раз больше длины его тела. Назвали их так, очевидно, потому, что взрослые насекомые ведут достаточно активную жизнь даже тогда, когда водоемы покрыты льдом, а других насекомых нет и в помине.

Поздней осенью, в зимние оттепели и ранней весной на снегу иногда встречаются комарики-хионеи. Они бескрылы и напоминают паучков. Стоит дотронуться до комарика, как он подожмет под себя ножки и притворится мертвым. А миг спустя уже снова прыгает как ни в чем не бывало.

Коллемболы и ледничики относятся к очень древним группам живых существ. Их представители существовали уже в палеозойской эре, примерно 300 миллионов лет назад. В то время они были наиболее распространенными членистоногими, так как появились на земле значительно раньше, чем настоящие насекомые и высшие растения.

Выжив в длительной борьбе за существование, коллемболы, ледничики и хионеи ведут скрытую и загадочную жизнь. Прав был знаменитый шведский натуралист Карл Линней, который как-то сказал, что природа наиболее удивительна в малом.


ЖУК ПРОТИВ АМБРОЗИИ

Растениям по природе, казалось бы, положено быть домоседами: ни ног у них нет, ни крыльев. Но, несмотря на это, они способны пересекать даже океаны. «Следом белого человека» назвали североамериканские индейцы невиданный ими в доколумбову эпоху подорожник, такой обыкновенный в Европе. Конечно, ни одному европейцу не приходило в голову завозить это растение на вновь открытый континент. Просто завоеватели и первые поселенцы садились на корабли и выходили на новый берег в грязных сапогах. К грязи и прилипли семена подорожника.

Взаимный обмен растениями идет между континентами непрерывно. Всем, наверное, знакомы обычные на полях и деревенских околицах в нашей средней полосе желто-зеленые пуговки соцветий-корзинок ромашки пахучей — в отличие от похожей ромашки обыкновенной у них не бывает белых краевых лепестков. И поначалу даже странно узнать, что, скажем, в пушкинские времена в России не знали этого растения. Нечаянно привезенное из Америки, оно стало неудержимо распространяться у нас лишь во второй половине прошлого века.

Именно неудержимо. И это характерно для многих «чужеземцев». Так было в Австралии с американскими кактусами. В Европе с элодеей — «водяной чумой», заполонившей многие стоячие водоемы. В Америке — с нашим зверобоем, который стал злостным сорняком на тамошних пастбищах, где вытеснил многие местные растения. Объясняется это в значительной степени тем, что, «переезжая» на новое место жительства, растения уходят от своих естественных врагов. Но это предсказывает и путь борьбы с сорняками-пришельцами: биологический, с помощью их вредителей.

Самый яркий пример его эффективности таков: специально завезенная в Австралию бабочка — кактусовая огневка — очистила от не в меру расселившихся кактусов 25 миллионов гектаров полей и пастбищ. Признательные сельские хозяева даже создали в ее честь мемориальный музей. Есть и другие примеры. Скажем, жуки-листоеды из рода хризолина в ряде районов той же Австралии, а также Американского континента успешно остановили нашествие зверобоя на пастбища.

С некоторых пор на полях Краснодарского и Ставропольского краев злостным сорняком стала амброзия, точнее, три вида растений, относящихся к этому роду. Наиболее агрессивный из них — амброзия полыннолистная. Проникла она к нам еще в начале века. Но особенно много очагов сорняка появилось после минувшей войны — семена его были еще раз случайно занесены на колесах «студебеккеров». Амброзия сегодня не только засоряет поля. В пору цветения пыльца ее вызывает у многих людей аллергические заболевания.

Остановить и искоренить амброзию может широкое распространение ее естественных специфических врагов. До сих пор опыта биологической борьбы с нею не было, и никто даже не высказывал такой идеи, хотя сорняк массово расселился не только у нас в стране, но и по многим районам Евразии, Африки и Австралии. Более того, когда у нас впервые занялись проблемой, то оказалось, что на родине амброзии никто специально не изучал ни насекомых, ни других ее недругов.

Вызывала тревогу сама необходимость завоза к нам из-за океана растительноядных насекомых. В Европе еще никогда не применялись такие методы биологической борьбы с сорняками. Случайно же чужеземные шестиногие попадали на наш континент: примеры того — колорадский жук или американская белая бабочка, ныне весьма опасные вредители. Не станут ли ими и враги амброзии?

Однако обстоятельное знакомство с «амброзиеедами» показало: они настолько специфичны, настолько тесно привязаны к единственному своему кормовому растению, что потеряли способность питаться даже близкими к нему видами того же ботанического рода.

Кстати, изучение врагов амброзии на ее родине вели американские и канадские энтомологи, которые затем и прислали нам насекомых для акклиматизации. А чтобы заинтересовать их в такой работе, мы вели встречную — по вредителям наших растений, переселившихся на Американский континент, в частности, горчака и васильков. И, между прочим, отправленные в США и Канаду наши шестиногие хорошо зарекомендовали себя.

В конечном итоге удалось выявить, что на 17 видах амброзии «пасутся», пожирая или поражая ее листья, цветки и плоды, около 450 видов насекомых, клещей, а также грибов. Из них отобрали врагов особенно злостного у нас сорняка — амброзии полыннолистной. Сейчас началась акклиматизация некоторых видов насекомых в тех местах, где амброзия наиболее широко распространена. Пока наилучшим образом проявил себя амброзиевый листоед. Он неплохо чувствует себя в нашем климате. Очень мало у него здесь и естественных врагов. В частности, птицы избегают клевать жука — он ядовит для них. Как взрослое насекомое, так и его личинки в пору роста амброзии — с апреля до середины сентября — активно поедают ее листья и соцветия.

Осенью 1978 года выпустили в Ставропольском крае около тысячи листоедов. В 1980 году их число приближалось уже к полутора миллионам. И здесь приходилось видеть сплошь облепленные ими кустики амброзии — с объеденными листьями и соцветиями. Этим растениям уже не оправиться, не дадут они и семян. Ожидаем, что в наступающем сезоне листоед продолжит свое наступление, насекомых будет уже несколько миллионов.

На Северном Кавказе есть другой сорняк, выходец из Америки, — паслен колючий, родственник картофеля. На его очаги напал колорадский жук. От зарослей сорняка после этого остались лишь единичные растения. Описанный случай может, наверное, считаться моделью будущих взаимоотношений амброзии и ее листоеда. Кстати, колорадский жук и амброзиевый листоед — тоже родственники, а кроме того, во многом сходны по биологии и образу жизни.

Но, конечно, предстоит еще немало поработать, наладить разведение насекомых и выпуск их во всех местах, где обитает амброзия. И речь идет не только о листоеде, но о целой «команде» пожирателей сорняка. Сейчас ведется акклиматизация мухи-пестрокрылки, личинки которой поселяются в соплодиях растений, выедая его семена, и амброзиевого ложнослоника. У последнего и личинки и взрослые насекомые кормятся на амброзии, причем поедают не листья, а соцветия, препятствуя появлению семян. На очереди работа еще с тремя видами. Когда она будет завершена, то в массе своей они справятся с сорняком. Дело упрощается тем, что амброзия — заносный вид, чужой для нашей флоры. Если его существенно ослабить, то в дальнейшем он будет вытеснен местными сообществами растений.


САКСАУЛ В АНТАРКТИДЕ?

К ученым Ботанического института имени В. Л. Комарова Академии наук СССР приезжают за консультацией самые разные специалисты. И все-таки они были несколько удивлены, когда к ним за помощью обратились… пограничники.

Пограничники рассказали, что служебные собаки, взяв след, уверенно преследуют нарушителей ночью. Но утром, после восхода солнца, овчарки словно бы утрачивают чутье — ведут себя неуверенно, сбиваются со следа.

Казалось бы, какая может быть связь между тонкостями пограничной службы и проблемами ботаники? Но точки соприкосновения стали проясняться, когда гости заговорили о такой уникальной способности растений, как фотосинтез.

Побуждаемые энергией солнечных лучей, они умеют извлекать из воздуха углекислый газ. И таким образом запасают углерод в виде углеводов, жиров и белков — этой пищи для всего сущего на земле. А взамен выделяют в атмосферу живительный кислород, которым дышит все живое.

Но это лишь одна сторона жизни растений: они, как и все живое, еще и дышат — поглощают кислород и выделяют углекислоту. Причем ночью, лишенные света, они, естественно, могут только дышать. И лишь с восходом солнца, когда включается фотосинтез, начинают выделять кислорода больше, чем поглощают.

Сопоставив это явление с поведением собак, пограничники задумались: может быть, главный виновник их бед именно фотосинтез? Кислород, который начинал бурно выделяться с восходом солнца, мог окислять сохранившиеся на листьях, цветах и стеблях растений пахучие вещества. И следы нарушителей границы как бы растворялись в воздухе.

Эту гипотезу и принесли пограничники на суд ученых. Но они хотели не просто утвердиться в своей правоте, но и получить практические рекомендации: как бороться с этим явлением?

Консультировали пограничников в Ботаническом институте сотрудники лаборатории экологии и физиологии фотосинтеза. Выбор на них пал не случайно. Руководитель лаборатории профессор Олег Вячеславович Заленский начал подобные исследования еще в довоенные годы. В 1940 году с помощью группы одесских альпинистов он поднял научные приборы в горы Восточного Памира. Сюда же, на высоту 6000 метров, были доставлены проростки ячменя и пшеницы.

Изучая, как идет фотосинтез в горах, ученый обнаружил важную закономерность: интенсивность этого процесса повышалась с ростом высоты над уровнем моря.

Уже эти исследования были проведены отнюдь не ради «чистой» науки. В те годы перед учеными была поставлена задача: помочь освоить высокогорные долины Памира для подсобного земледелия.

Позже, перебравшись с Памирской биологической станции в Ленинград, Заленский стал организатором и руководителем многочисленных экспедиций. Они изучали фотосинтез на Таймыре и острове Врангеля, в Сибири и Средней Азии, в пустынных степях далекой Монголии.

Ученых в первую очередь интересуют крайности — экстремальные условия существования растений. В таких условиях, образно говоря на грани жизни и смерти, легче всего познать, как растения приспосабливают механизм фотосинтеза к тем или иным особенностям окружающей среды…

Высокогорный як, если быстро спустить его с гор, погибнет от разрыва сердца. Символ раскаленных пустынь — кактус — просто-напросто зачахнет во влажных условиях тропиков. С этой точки зрения морошка в Африке или саксаул в Антарктиде — чистой воды фантазия. И тем не менее нельзя не удивляться, как гибко и цепко растения приноравливаются к самым суровым и трудным условиям.

Всякий знает, что первые же заморозки могут «прихватить» листву у картофеля. А на Памире тот же картофель может сохранить свою ботву при ночных понижениях температуры до минус 7–8 градусов! Как ему это удается? Все дело в том, что обычно в процессе фотосинтеза сахара, содержащиеся в растительных клетках, превращаются в крахмал. А растения, выросшие на Памире, накапливают преимущественно только сахар, который прочно связывает воду. И тем самым резко снижает точку ее замерзания. Теперь, чтобы превратить ее в лед, нужны морозы посильнее. Поэтому-то растениям и не страшны ночные заморозки на Памире.

Жизнь ставит перед учеными все новые проблемы. Скажем, сейчас в невиданных масштабах осваивается север страны. Но его природа очень хрупка: вездеход процарапал следы в тундре — и нужны десятки лет, чтобы эти шрамы исчезли. Природа здесь нуждается в помощи. Но в какой? Этот вопрос обращен к науке. А возьмите проблему тенелюбивых растений…

Оказывается, есть и такие. Они страшатся яркого света, прячутся от него в нижних затененных ярусах таежных — ельников, лесостепных дубрав, тропических гилей. Но вот лес начинают рубить. И молодь, жизнь которой складывалась в тени, неожиданно лишенная защиты от света, может погибнуть. Спрашивается: как с учетом данных о1 фотосинтезе тенелюбов надо вырубать леса? Через дерево? Или узкими полосами? На эти вопросы должны дать ответ ученые.

Возьмите наши города, особенно крупные промышленные центры. Резкое ухудшение условий в них может стать причиной своего рода стресса у растений. Впервые его отчетливо наблюдали в начале века в Берлине, когда там ввели газовое освещение: при этом погибли столетние липы на знаменитой Унтер-ден-Линден. С этой точки зрения фотосинтез может служить хорошим индикатором стойкости растений, их терпимости к ухудшению внешних условий.

Кактусы словно верблюды умеют накапливать громадные запасы воды — до 2–3 тонн в одном растении! И потом крайне экономно расходуют ее. Этому помогает сама форма растений — многие кактусы «сложены» из шаров. А шар, как известно, среди, всех геометрических форм с тем же объемом обладает минимальной внешней поверхностью. Отсюда и минимальные потери влаги через оболочку.

Есть у кактусов и другая особенность: у них очень мало устьиц — тех отверстий в оболочке, через которые обычно испаряется вода. Но вот загадка: через эти же отверстия поступает и необходимый для фотосинтеза углекислый газ. А кактус, чтобы сохранить драгоценную влагу, днем вообще закрывает устьица. По логике, без сырья должен прекратиться и фотосинтез. А он идет! За счет чего? Оказалось, что кактусы открывают устьица по ночам, когда влажность окружающего воздуха увеличивается. И, соответственно, резко уменьшаются потери влаги. В эти-то часы они и запасают впрок углекислый газ, чтобы днем, под лучами солнца пустить его на «переработку».

Может быть, подобные тонкости фотосинтеза заинтересуют инженеров, подскажут им, как создать аппараты для очистки воздуха городов от индустриальных выбросов? С фотосинтезом связана и другая заманчивая идея: не исключено, что в будущем он ляжет в основу производства искусственной «небесной» нефти — из углекислоты воздуха. Но это уже проблемы за гранью сегодняшнего дня.


ТАЙНА ДРЕВНЕГО КОРНЯ

Кто не знает о чудодейственных, почти сказочных свойствах корня женьшеня — реликтового растения, которое было известно в восточной медицине еще 4000 лет назад. Впервые он упоминался в древнейших китайских сочинениях за два тысячелетия до нашей эры.

В природе это ценное растение встречается сейчас крайне редко. Женьшень занесен в Красную книгу. Истощение его природных запасов привело к созданию специальных плантаций. Впервые женьшень был получен на плантациях в Корее и Китае, а затем в Японии и США. В России первые плантации женьшеня появились в 1910 году. Сейчас в Советском Союзе существует несколько хозяйств, занимающихся его выращиванием. Дело это весьма сложное, трудоемкое и малорентабельное.

Получаемый урожай не способен даже на одну сотую удовлетворить спрос на чудодейственный корень.

Сделать женьшень более доступным и дешевым помогли ученые. Их многолетние поиски увенчались успехом. В Советском Союзе в Институте физиологии растений АН СССР впервые в мире была получена культура изолированных тканей и клеток корня женьшеня — наиболее ценная его часть. Специалистами ВНИИбиотехники была разработана технология промышленного культивирования биомассы этого растения.

Если в естественных условиях прирост корня составляет всего несколько граммов в год, то на предприятиях Главмикробиопрома за 30–60 дней количество биомассы увеличивается в 15–20 раз!

Сейчас на основе женьшеневого настоя, приготовленного из биомассы, московское объединение «Свобода» выпускает крем «Лесная нимфа», а один из киевских заводов наладили производство шампуня «Диона». ВоВНИИ пивобезалкогольной промышленности разработан новый безалкогольный тонизирующий напиток «Женьшень». Рассматривается также вопрос об использовании биомассы женьшеня в медицине.

Другое растение, которое не уступает по своим лечебным качествам женьшеню, — родиола розовая. В народе это растение за чудодейственные свойства величают «золотым корнем».

«Золотой корень» издавна применялся в народной медицине Алтая как средство, снимающее усталость и повышающее работоспособность. Старинное поверье гласит: «Тот, кто сыщет золотой корень, будет до конца дней своих удачлив и здоров, проживет два века».

Как показали исследования, родиола розовая и препараты из нее обладают стимулирующим действием на нервную систему и в первую очередь — на кору головного мозга. По своему действию «золотой корень» сходен с женьшенем и относится к группе так называемых адаптогенов — веществ, повышающих сопротивляемость организма воздействию неблагоприятных факторов внешней среды. Препараты родиолы розовой повышают мышечную деятельность и умственную способность человека, нормализуют функцию коры головного мозга при неврозах, влияя на возбудительный процесс. По стимулирующему действию они превосходят левзею и другие растительные стимуляторы.

Хотя запасы «золотого корня» значительно превосходят запасы женьшеня, это растение также занесено в Красную книгу и находится под охраной государства. Как правило, заготавливают корни в возрасте 8—10 лет, поэтому выращивать на плантациях их нерационально.

Специалистам ВНИИбиотехники удалось получить культуру родиолы розовой и разработать технологию производства ее биомассы. Эта работа проводится в рамках комплексной программы «Биотехнология», предусматривающей получение в искусственных условиях ценного растительного сырья.

Разработанный метод позволяет из кусочка листа получить целое растение. Однако в данном случае целое растение ни к чему. Нужен лишь корень — наиболее его ценная часть.

На срезе корня образуется своеобразный наплыв—так называемая капустная ткань. Ее клетки обладают теми же свойствами, что и клетки самого корня, но отличаются большими размерами и способностью к ускоренному росту. Именно поэтому ученые взяли капустную ткань за основу для промышленного культивирования биомассы.

«Золотой корень» разрезают на крохотные кусочки, тщательно стерилизуют и затем помещают в специальную питательную среду. За двадцать пять дней в пробирке происходит маленькое чудо — из одного грамма ценного корня образуется двадцать. По своим свойствам полученная биомасса ни в чем не уступает натуральным клеткам родиолы розовой.

Специалисты ВНИИбиотехники разработали технологию глубинного, или суспензионного, метода получения биомассы. Это позволяет вдвое ускорить процесс и, что особенно важно при промышленном производстве, сделать его беспрерывным.

Уже в нынешней пятилетке московское объединение «Свобода» начнет выпускать ряд косметических изделий на основе «золотого корня». Сейчас в 1-м Московском медицинском институте проводят испытания целебных свойств биомассы с тем, чтобы в дальнейшем использовать ее в медицине. Разработанные методы позволяют наладить выпуск биомассы любых редких, экзотических растений. В том числе и тропические, которые не произрастают на территории Советского Союза. Со временем широкое промышленное производство сделает чудодейственные растения сравнительно дешевыми и общедоступными.


ИНТЕГРИРОВАННАЯ ЗАЩИТА РАСТЕНИЙ

Вот что рассказал академик ВАСХНИЛ Ю.Фадеев.

В нашей стране разработаны комплексные системы интегрированной защиты растений от вредителей и болезней. В 1981 году такие системы внедрены на площади 50 миллионов гектаров. По подсчетам специалистов, это позволило получить дополнительно сельскохозяйственной продукции на 8 миллиардов рублей. Однако экономическая эффективность не единственное достоинство систем интегрированной защиты. Применение их значительно уменьшит степень загрязнения окружающей среды химическими препаратами.

Если не бороться с вредителями и болезнями сельскохозяйственных культур, то они могут уничтожить до 50 процентов возможного урожая. В 50— 60-е годы химические средства защиты метений позволили существенно интенсифицировать сельскохозяйственное производство во всем мире за счет резкого снижения потерь урожая. В то же время их массовое применение привело к отрицательным экологическим и санитарно-гигиеническим последствиям.

В ряде случаев гибли животные, птицы, рыбы. Пестициды, особенно хлорорганические (наиболее известные из них — ДДТ и гексахлоран), обладают свойствами длительного сохранения в биологических системах. Они накапливаются в почвах, воде, пищевых продуктах. Кроме того, у более чем трехсот видов насекомых-вредителей выработалась невосприимчивость к пестицидам, что потребовало увеличения их доз.

Особую остроту у нас в стране эта проблема приобрела в хлопководстве, где многолетнее и многократное в сезоне применение фосфорорганических препаратов привело в ряде районов Средней Азии к появлению устойчивых форм паутинного клеща, тлей. В последние годы в Узбекистане и Таджикистане отмечается возникновение популяций хлопковой совки, устойчивых к инсектицидам. В садах Крыма, Азербайджана, Краснодарского края размножились устойчивые популяции клещей и яблоневой плодожорки. Поэтому количество необходимых для борьбы с ними химических обработок возросло с 2–3 до 10–15.

Вывел из «пестицидного тупика» новый подход к проблеме защиты растений, основанный на комплексном использовании, то есть интеграции, различных, в том "числе нехимических, методов борьбы с вредными организмами в посевах и насаждениях. Интегрированная защита растений исходит прежде всего из того, что на посевах сельскохозяйственных культур присутствуют не только вредители, но и их враги. Непродуманное применение пестицидов для борьбы с вредителями может привести к уничтожению и полезных организмов.

Вредитель наносит ощутимый вред лишь при достаточно высокой численности. Если же численность его ниже определенного уровня — экономического порога вредоносности, то применение пестицидов нецелесообразно. В таких условиях отказ от химических обработок ведет к сохранению и увеличению численности полезных насекомых-хищников.

В настоящее время разработаны экономические пороги вредоносности для более чем 100 видов вредителей (вредной черепашки, серой зерновой совки, злаковой мухи, лугового мотылька и др.). На основе экономического порога вредоносности хлопковой совки в Таджикистане внедрена система интегрированной защиты хлопчатника. Химические обработки проводятся лишь в том случае, когда численность гусениц превышает 10 особей на 100 растений у средневолокнистых и 5 — у тонковолокнистых сортов.

Только за 1978–1979 годы экономия от сокращения химических обработок, в результате использования этих методов по Таджикской ССР составила более 17 миллионов рублей. Химическая обработка также не нужна и в ряде случаев, когда численность насекомых-хищников (энтомофагов) достаточно велика. Для хлопчатника, например, необходимо 250–300 специальных энтомофагов на 100 растений. Точное определение численности полезных и вредных организмов позволило отказаться от химических обработок на площади более 8 миллионов гектаров.

Исключительно важную роль в снижении пестицидной обработки играют устойчивые сорта сельскохозяйственных культур, использование которых — один из важных элементов интегрированной защиты. Численность популяций вредителей на устойчивом сорте часто в 30—100 и более раз ниже, чем на восприимчивых. Соответственно и пестицидов для них требуется меньше.

Выращивание здоровых растений, использование высококачественного семенного материала, соблюдение сроков сева, уборки и сезонных работ по обработке посевов — все эти приемы агротехники избавляют от необходимости проведения излишних химических обработок посевов и насаждений.

Перечисленные меры не означают отказа от химических обработок. Более того, химические средства и в перспективе будут занимать важнейшее место в этой системе. Однако подходы к выбору самих средств, к методам и тактике их применения, наконец, к принципам отбора новых препаратов будут, естественно, существенно меняться.

Прежде всего высокотоксичные и долго — от полугода и более лет — сохраняющиеся в биологических системах препараты заменяются на менее токсичные и разлагающиеся в более короткие сроки. Средняя токсичность пестицидов, использовавшихся в нашей стране за последние 20 лет, снизилась более чем в шесть раз. Созданы и продолжают разрабатываться высокоизбирательные пестициды, то есть высокотоксичные для вредителей и малотоксичные для полезных насекомых.


ВТОРОЕ РОЖДЕНИЕ ОБЛЕПИХИ

В Научно-исследовательском институте садоводства Сибири имени М. А. Лисавенко впервые в мире из диких растений облепихи выведены сорта, дающие высокий урожай ягод с большим содержанием биологически активных веществ и отличающиеся другими ценными признаками и свойствами.

Эта работа началась около полувека назад. И почти каждый год экспедиции института отправляются на Алтай, Тянь-Шань, Кавказ, в Саяны, Забайкалье, Монголию, чтобы там, в зарослях дикой облепихи, из сотен и сотен диких кустов выбрать порою один-два наиболее перспективных. Говорят, что главный рабочий инструмент селекционера — его собственная интуиция. Всегда поражает способность селекционеров по едва заметным признакам отобрать нужный куст.

Тот, который в потенции сможет дать высокий урожай или накапливать в ягодах больше облепихового масла, витаминов, каротина или других биологически активных веществ, который даст крупные ягоды с приятным вкусом и ароматом или будет иметь меньше колючек на ветвях, более длинные и менее прочные плодоножки. Доставленные с великими трудами в институт, эти растения выдерживают здесь жесточайший конкурс: ягоды исследуют биохимики, облепиху испытывают на морозостойкость, устойчивость к заболеваниям и т. д. Селекционный фонд института сейчас насчитывает 26 тысяч растений.

Изучая биологию облепихи, ученые пришли к выводу, что по-настоящему ценные сорта могут быть созданы гибридизацией географически отдаленных форм. Этот метод позволяет объединить в одном растении многие разнородные признаки и свойства «родителей». Потомство, полученное этим методом, обретает особую силу: расцветает весь организм растения, оно становится жизнестойким, повышается его продуктивность.

В зарослях дикой облепихи собирают обычно не более 3–7 центнеров с гектара. На промышленных плантациях опытно-производственного хозяйства «Барнаульское», засаженных сортами института, с гектара берут по 120 центнеров. Один из лучших сортов — «чуй-ская». Гектар этого сорта дает более 285 центнеров ягод. А при лиманном орошении, позволяющем уплотнить посадки, — свыше 535 центнеров! Случай, видимо, не так уж часто встречающийся в селекции. Но и это далеко не все.

Немногим, наверное, известно, что изучением облепихи и облепихового масла в нашей стране занимаются в 26 научно-исследовательских институтах, кафедрах высших учебных заведений, заводских лабораториях. Все ученые, исследующие облепиху, утверждают, что биохимический состав его ягод и семян уникален. Вот что, например, писал в своей книге «Витамины на ветках» один из крупнейших знатоков облепихи профессор Уральского лесотехнического института Л. Вигоров: «…маленькая оранжевая ягодка облепихи содержит в себе такие защитные вещества, которых нет ни в одной самой крупноплодной и вкусной садовой культуре».

Ученые десятилетиями открывали в облепихе все новые защитные, биологически активные вещества. В ней обнаружены 10 витаминов, целебные стеарины, 17 аминокислот, органические кислоты, целый набор микроэлементов… Ученые постоянно открывают в плодах этого уникального растения все новые вещества. Удалось обнаружить и исследовать важные закономерности взаимоотношения биохимического состава родительских форм облепихи и потомства. И это позволило в таких новых сортах облепихи, как «чуйская», «сибирская», «обильная», «оранжевая», «самородок», общее содержание биологически активных веществ повысить в 2–5 раз.

В 100 граммах этих сортов — 7 граммов облепихового масла, до 6 миллиграммов каротина, свыше 100 миллиграммов витамина С. Для сравнения: в 100 граммах лимона от 45 до 140 миллиграммов витамина С. Институт создал сорта облепихи, которые по урожаю сравнялись с лучшими южными плодовыми культурами, а по содержанию и разнообразию биологически активных веществ превзошли их.

Приручая облепиху, селекционеры исправили многие «ошибки природы». У четырех сортов, созданных институтом, нет колючек на ветвях, у остальных их очень мало. Вдвое удлинились плодоножки, на которых держатся ягоды. В два-три раза увеличились размеры ягод. Все это облегчило уборку урожая. Разработана агротехника возделывания облепихи, механизированы все процессы, за исключением уборки урожая.

Разработан метод массового размножения облепихи зелеными черенками, гарантирующий сохранение сортов и экономическую эффективность. Такие черенки укореняют и выращивают в искусственно созданном тумане. Процесс автоматизирован. Сотнями тысяч везут сейчас из института саженцы в хозяйства Сибири, других районов и за рубеж. И, видимо, не исключено, что Сибирь в перспективе сможет выращивать столько облепихи, сколько сейчас Грузия производит винограда.

Заведующий лабораторией экспериментального мутагенеза, доктор биологических наук Г. Привалов поставил эксперимент, цель которого — выяснить, как будет реагировать облепиха на различные воздействия. После этого он высказал предположение: источник сил и стойкости облепихи следует искать в условиях ее жизни. На протяжении миллионов лет эволюции облепиха жила в условиях поистине спартанских. Эти светолюбивые кустарники были вытеснены другими растениями на берега рек и морей, очень часто они живут на галечниках. Облепиху крушат и с корнями вырывают ледоходы, вымораживают паводки, выжигают весенние пожары.

Облепиха должна была навсегда исчезнуть с лица земли. Но она приспособилась к такой жизни. Жизненно важный азот, например, она поглощает прямо из воздуха, чего не способны делать многие другие растения. Облепиха жадно берет из окружающей среды огромное количество различных веществ, преобразует, усиливает их и строит из них свой организм. Именно эти вещества и составляют основу силы и стойкости облепихи. Особенно ценные накапливаются в ягодах и семенах. Здесь формируется сложнейший комплекс веществ — облепиховое масло.

Внимание ученых к облепихе скорее всего вызвано тем, что ягоды этого растения издавна использовались в сибирской народной медицине для лечения различных заболеваний. Сибиряки давно научились кустарно делать облепиховое масло из ягод. При лечении им, например, даже после очень сильных ожогов шрамов не остается. Облепиха передает тканям часть своей силы, помогает им быстрее и полнее восстанавливаться, заживать.

Многие ученые исследовали лечебные возможности облепихи и ее масла. Часть из них утверждает, что лечащее начало облепихового масла — особые вещества — стерины. НИИ садоводства установил научные контакты с Новосибирским институтом органической химии Сибирского отделения АН СССР. Научные сотрудники этого института выделили из облепихового масла четыре химически чистых стерина. Кандидат биологических наук А. Лапик вызвала у больших групп экспериментальных белых мышей язву желудка и с помощью этих стеринов излечивала ее менее чем за два месяца. Еще более впечатляющий эффект получили в Москве специалисты Всесоюзного научно-исследовательского витаминного института. В обоих институтах облепиховое масло или стерин давали и здоровым мышам, и оказалось, что вызвать у них язву желудка очень трудно.

Дальнейшие исследования, возможно, потребуют вести селекцию с целью увеличить в облепихе содержание других лечащих веществ. Но и сейчас возможности для лечения облепиховым маслом в нашей стране не так уж малы. Работы НИИ садоводства способствовали расширению сырьевой базы для производства облепихового масла. Основной производитель этого масла Бийский витаминный завод за последние годы утроил его выпуск и сейчас производит 60 тонн в год. Завод реконструируется, переходит на новую технологию, производство продукции будет расти.


ЦВЕТЫ ЗАКАЗЫВАЮТ ПОГОДУ

Какие требования к микроклимату в теплицах предъявляют те или иные культуры? На этот вопрос лучше всего отвечают… сами растения. В этом им помогают специальные датчики, разработанные в Физико-энергетическом институте Академии наук Латвийской ССР. Миниатюрные устройства измеряют разность температуры листьев и окружающего воздуха, влажность стебля и даже скорость роста зеленой массы на протяжении нескольких минут.

Новинку испытывали на гвоздиках и герберах. Снабженные датчиками, цветы непрерывно сигнализировали о своем физиологическом состоянии. И, словно операторы, управляли электронным блоком кондиционера, который с неизменной готовностью удовлетворял их желания.

В институте разработан целый комплекс автоматических устройств, увеличивающих продуктивность тепличных хозяйств и снижающих затраты энергии. Командуя исполнительными механизмами, цветы включают освещение, подают углекислый газ, регулируют циркуляцию горячей воды в отопительных трубах, запускают вентиляторы, открывают фрамуги. Создан и прибор, измеряющий влажность почвы по ее электрическому сопротивлению.


ЦВЕТОЧНЫЕ ЧАСЫ

Каждое лето одеваются наши города в прекрасные цветочные наряды. Только цветники Москвы занимают почти 50 гектаров. Ежегодно здесь высаживается свыше 10 миллионов штук рассады.

Цветы украшают землю давным-давно. Им около 125 миллионов лет. Появились они в ранний меловой период, и было их тогда мало. Только 15 миллионов лет спустя расселились цветы по всему земному шару, расселились повсюду, и не единицами, не каждый цветок сам по себе, а сложными многоярусными сообществами, что и помогло им не только выжить, но и завоевать новые территории.

Среди высших растений современная флора насчитывает более 400 семейств, 12 000 родов и, вероятно, не менее 235 000 видов, имеющих цветок. По числу видов цветковые значительно превосходят все остальные группы высших растений, вместе взятые.

С цветами связано множество легенд. Известна печальная судьба прекрасного юноши по имени Нарцисс, иссохшего от любви к себе и превратившегося в хрупкий цветок. Другой цветок, полюбившийся нам, назван астрой, что означает «звезда». Согласно легенде первая астра выросла на том месте, где упал осколок, оброненный пролетавшей над Землей рассеянной звездочкой. Древнеримская легенда рассказывает, что в анютины глазки превращались любопытные, любившие втайне подглядывать за другими.

Наблюдая цветы, люди заметили, что их жизнь подчинена определенным биологическим ритмам: одни из них раскрывают свои яркие венчики ранним утром и закрывают их, когда солнце в зените, другие остаются открытыми весь день или «оживляются к вечеру». Еще в Древней Греции и Риме на цветниках высаживали растения, биологические ритмы которых позволяли определять время.

Более 250 лет назад знаменитый естествоиспытатель Карл Линней составил свои первые «Часы Флоры». На клумбе в городе Упсале (на 60-м градусе северной широты) росли цветы, венчики которых открывались в определенной последовательности с 3–5 часов утра до полуночи. Там росли всем знакомый одуванчик, лен, картофель, яркая сарана, скромная кисличка…

Каким законам подчиняются биологические ритмы цветов, пока до конца неизвестно. Есть основания предполагать, что они находятся в тесной связи с геометрическими характеристиками Земли. Показания цветов-часов зависят и от географического положения местности. Поэтому каждый, кто захочет устроить такие часы, должен подобрать растения в соответствии с местными условиями. Например, в средней полосе европейской части СССР раньше всего, в 3–5 часов утра, «просыпается» козлобородник луговой — желтый мохнатый цветок на изящной ножке. В 4–5 часов на поле появляются прекрасные огоньки мака, открываются голубые венчики цикория. Затем просыпается осот и красноднев.

К 6 часам утра подымает головку веселый одуванчик, на поле разливается голубое половодье льна, открываются бело-фиолетовые цветки картофеля. Позднее красными точками вспыхивает в траве полевая гвоздика. К 9 часам утра раскрываются нежные лепестки кислички и оранжевые венчики ноготков, на тихих речках и прудах всплывает прекрасная белая лилия. До конца дня продолжают украшать землю яркие ароматные цветы шиповника. Только к вечеру просыпается пахучий душистый табак, после захода солнца начинает благоухать ночная фиалка, в полночь раскрывается чашечка цветка кактуса «Царица ночи»…

Цветочные часы, отмерившие уже миллионы лет, продолжают безупречно «ходить».


ЖИВОЙ КОМПАС ГЕОЛОГОВ

Ученых и специалистов кафедры ботанической географии Ленинградского университета имени А. А. Жданова в шутку зовут рудознатцами. Так называли предшественников современных геологов-разведчиков.

Но не имели прежние рудознатцы нынешней поисковой техники, а располагали лишь опытом да секретами, из поколения в поколение передававшимися. А один из секретов заключался в определении месторождений по растениям: бурая трава, к примеру, говорила о скрытых в этом месте залежах бурого железняка. Интересовался этими методами и М. Ломоносов. «На горах, в которых руда и другие минералы родятся, растущие деревья бывают обыкновенно нездоровы, то есть листья их бледны, а сами низки, кривлеваты, суховаты, гнилы…»—так описывал он в одной из своих работ свойства растений-индикаторов. Так что же, неужели современная наука вернулась к древним методам?

Оказалось, возврат к старине имеет прямой смысл, и идея поисков полезных ископаемых с помощью растений — научная основа которой была заложена академиками В. Вернадским и А. Виноградовым — нашла сторонников и привела к неожиданным результатам. А новый метод, получивший название биогеохимического, развивается настолько успешно, что с его помощью уже открыто не одно месторождение.

Сейчас почти все месторождения, лежащие близко к поверхности, не только открыты, но и почти выбраны. А те, что лежат на большой глубине, определять с помощью традиционных методов становится все труднее. И вот тут геологов могут выручить растения-индикаторы: ведь они питаются «соками земли» — через корни в стебель и листья поступают химические элементы почвы.

Конечно, в основе поисков ископаемых по растениям лежит не визуальное, «по Ломоносову», наблюдение, а система анализов растительности на наличие химических элементов. Состав почв оказывает влияние и на подбор растений, воздействуя на их изменчивость, диктуя различные биологические реакции — изменение окраски венчика, обесцвечивание листьев, отмирание отдельных их участков, видоизменение формы, когда, к примеру, обычный цветок становится вдруг махровым.

Ученые долго не могли разгадать причину бочкообразных наростов на ветвях берез и караганов в Туве. Оказалось, что это верный признак кобальтово-никелевых месторождений. А почему вдруг в некоторых районах Южного Урала растет белая сон-трава, испокон веку имеющая только фиолетовую окраску? Секрет прост — под ней пласты никеля. А дикий мак в Армении, украсивший свои лепестки черными полосами, подсказал: ищите медно-молибденовые залежи.

Сейчас в списке растений-индикаторов 214 названий, 60 из которых уже проверены. С их помощью можно искать почти все виды ископаемых металлов.

Несколько лет назад ученые вместе со специалистами Кольской комплексной геологической экспедиции поставили эксперимент. На известном месторождении обследовали растения, в том числе насаждения елей. Данные анализов применили в новом поисковом районе, где предполагали наличие меди. Предположения подтвердились. Такие же исследования провели прошлым летом в районе БАМа — собрали коллекцию образцов флоры на Удоканском месторождении, данные исследований будут использованы для прогнозирования новых месторождений в этой зоне.

Биохимический метод применяется в ряде геологических управлений, например в Бурятии, в Карагандинской области, на Кольском полуострове. Взяли его на вооружение не только геологи. Он используется, к примеру, при определении норм для удобрения почв в районах Нечерноземья, при разработке мероприятий по охране окружающей среды.


ПОДСОЕДИНИТЕ ЧАСЫ… К ЛИМОНУ

Необычным источником питания для электронных часов воспользовался часовой мастер. Подсоединив к контактам часового электродвигателя цинковую и медную пластины, он воткнул их… в обычный лимон.

И результат превзошел самые смелые ожидания: питаясь от природной батареи, часы исправно шли несколько месяцев. Изобретательный мастер считает, что подобные растительные источники электроэнергии могут получить широкое применение в быту. Например, тот же телевизор можно «подключить» к стволам ревеня, которые богаты кислотой.


РОДОСЛОВНАЯ СТОЛЕТНИКА

Пустыня Карру… Находится она в Африке. Красные и безмолвные плоскогорья Карру. Среди пустыни изредка попадаются причудливые деревья — высокие, до 20 метров, с толстым красноватым стволом, с сочными длинными мечевидными листьями. Это… наши старые знакомые — столетник, или алоэ древовидное. А вот и цветы алоэ. Из середины пучка листьев выглядывает цветочная стрелка с кистью мелких желтых или оранжевых цветков. Их запах вызывает головную боль. Некоторые до сих пор верят, что алоэ зацветает один раз в сто лет (отсюда и зовут его столетником), но это ошибка. Просто у нас дома для цветения алоэ не хватает света и тепла.

Ни одно из известных лекарственных растений не пользуется, наверное, таким большим успехом, как алоэ. Оно применялось в медицине еще в далекой древности. Античные врачи Плиний и Диоскорид знали и высоко ценили лечебные свойства алоэ. Именно из-за этого растения Аристотель советовал Александру Македонскому завоевать остров Сокотра, где туземцы из произрастающего там алоэ готовили сгущенный сок. За стойкость к засухе и неприхотливость арабы считали алоэ символом терпения. И назвали потому выпаренный досуха сок алоэ «сабур» (по-арабски «сабр» — терпение). Это название дошло и до наших дней.

Удивительно, что обитатель знойной Африки не потерял своих полезных свойств вдали от своей родины. У нас в стране алоэ успешно выращивается в зоне влажных субтропиков Закавказья. Интерес к нему как лечебному средству особенно возрос в 30-х годах нашего столетия. Исследования показали наличие в соке алоэ целого комплекса веществ: витамины, смолы, ферменты, антрагликозиды, микроэлементы железа, марганца, кобальта, меди.

В медицине алоэ используется в виде свежего сока, сухого сока и препаратов для тканевой терапии по Филатову. Свежий сок получают прессованием листьев и используют для лечения различных ран. В домашних условиях на раны непосредственно накладывают свежие листья. Иначе используется сухой сгущенный сок «сабур». В больших дозах он обладает сильным слабительным действием, в малых — повышает пищеварительную деятельность и вызывает аппетит. Однако в настоящее время это старинное средство используется очень редко. Следует предостеречь любителей самолечения: во всех случаях, прежде чем обращаться за помощью к алоэ, надо обязательно посоветоваться с врачом.

Но особенно ценит медицина препараты, получаемые из листьев алоэ, предварительно обработанных по методу, предложенному академиком В. Филатовым. Оказалось, что отделенные от растения листья в неблагоприятных условиях (низкая температура, темнота) начинают вырабатывать особые вещества, получившие название «биогенных стимуляторов», которые возбуждают угасающую жизнедеятельность клеток. Препараты, полученные из обработанных таким образом листьев алоэ, попадая в организм человека, становятся стимуляторами для клеток больного органа.


СЕКРЕТЫ КРАСНОГО ЛУЧА

Пряно пахло влажной землей. Гряда опытных овощей намного превосходила обыкновенную буйной растительностью, сочной зеленью, обилием ярких плодов, которые прямо-таки «рапортовали» о своем здоровье.

Когда же быстрее всего растет зеленый мир? Как ни странно, наука до сих пор горячо спорит по этому поводу. Одни говорят: в ночной темноте, другие утверждают, что днем, третьи выдвигают теорию одинакового роста во все часы суток…

Простенький будто бы вопрос потребовал от ученых долгих лет работы, множества экспериментов и опытов. И теперь они обоснованно утверждают: самый энергичный рост на утренней и вечерней заре, при наибольшем количестве низкоинтенсивного красного света. И тут уж было совсем недалеко от такой идеи: вызвать параметры этого света, имитировать его под тепличной крышей. Ведь это ускорит рост и умножит урожай!

Меняли длину волн оптического излучения — нашли наиболее действенный. Перебрали все цвета радуги и оттенки красного — определили лучший. Испытывали разные сорта и виды растений… И вот висят теперь светильники над грядкой и вызывают превращения поистине чудесные.

Опыт уже уверенно шагнул и за порог теплицы. Колхоз «Россия» Пермского района охотно взялся испытать его в реальных условиях.

С одного квадратного метра теплицы здесь снимают огурцов в три раза больше, чем с обычного тепличного метра.

В два раза быстрее развивается и опытная капуста. Специалисты колхоза уже сегодня убеждены в большой перспективе «красного луча». Он намного приближает сроки получения урожая. Скажем, для огурцов это почти двойное ускорение. Значит, повышается и интенсивность использования площадей, в 3–4 раза можно увеличить производство овощей в зимние и весенние месяцы, когда они особенно нужны в нашем рационе.


НА ПРИНЦИПАХ САМООБСЛУЖИВАНИЯ

Сохранить урожай скоропортящихся овощей и фруктов не простая задача. Но оказывается, что необходимые для длительного хранения условия могут создать для себя… сами плоды. Дело в том, что, даже снятые с грядок и ветвей, они продолжают жить и дышать — поглощать кислород и выделять углекислый газ. Дело за малым: надо поместить их в такие емкости, где бы углекислый газ постепенно накапливался, а кислород поступал в ограниченных количествах.

Как это сделать?

С помощью газоразделительных мембран, которые создали сотрудники ВНИИ синтетических смол.

Испытания показали: при хранении в полиэтиленовых мешках с «окошками» из таких мембран потери яблок снижаются в 9 раз, чеснока — в 8 раз, семенного картофеля в 4 раза. Значительно уменьшаются потери и других культур, в том числе чайного листа — в целлофановой упаковке с мембранами он сохраняет до переработки свои ценные качества в течение 5–7 дней.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх