41. Биологическая роль соединений железа. Гемоглобин

Железо – биогенный элемент, содержится в тканях животных и растений. Общая масса железа в организ–ме взрослого человека примерно 5 г, что составляет 0,007%. Металлическое железо малотоксично, а сое–динения Fe (II), Fe (III) и Fe (VI) в больших количествах опасны для здоровья.

Миоглобин, цитохромы, каталаза обеспечивают клеточное дыхание.

Все эти белки состоят из собственно белковых частей и связанных с ними активных центров. Активный центр представляет собой макроциклическое комплексное соединение – гем. В качестве макроциклического ли-ганда выступает соединение – порфирин. Донорные атомы азота расположены по углам квадрата, в центре которого расположен ион Fe. В целом комплекс имеет октаэдрическую конфигурацию. Пятая орбиталь через азот аминокислоты (гистидина) используется для связи гема с белком.

Гемоглобин состоит из 4 белковых молекул (субъеди–ниц), которые образуют единый макромолекулярный агрегат. Каждая субъединица по строению аналогична молекуле миоглобина. Таким образом, гемоглобин может одновременно связывать четыре молекулы О2 , а миоглобин – 1.

В тканях имеется также несколько негемовых желе–зосодержащих белковых комплексов. Это, например, ферменты – оксидазы, а также белки – накопители (депо) и переносчики железа. Избыток железа перено–сится с кровью белком трансферрином и накапливает–ся в виде белка ферритина в различных тканях и орга–нах, особенно в печени, селезенке, костном мозге.

Ферритин состоит из 24 белковых молекул (субъ–единиц), которые образуют сферу диаметром 12—14 нм. Каждая субъединица содержит полость диа–метром 7 нм, вмещающую до 4500 атомов железа. Та–ким образом, каждый агрегат ферритина может хранить запас примерно 100 000 атомов железа, обеспечивая многочисленные реакции метаболизма с участием это–го элемента.

На основе законов химического равновесия нетруд–но понять функционирование гемоглобина как пере–носчика кислорода от легких к тканям.

Гемоглобин без кислорода (дезоксигемоглобин) представляет собой слабую кислоту и его химическую формулу можно представить в виде HHb+. Присоедине–ние кислорода сопровождается отщеплением протона и образуется оксигемоглобин HbO2- . При этом имеет место равновесие:

HHb+ + O2 > HbO2 + Н+.

При поступлении бедной кислородом венозной крови в легкие, где парциальное давление кислорода велико (до 20 кПа), его растворимость возрастает согласно за–кону Генри. Это приводит в соответствии с принципом Ле Шателье к смещению равновесия вправо и образо–ванию оксигемоглобина. Дополнительное смещение равновесия вправо обусловлено тем, что в легких зна–чение рН повышено (до 7,5). В результате в легких дезоксигемоглобин практически полностью (до 97%) на–сыщается кислородом и переходит в оксигемоглобин. В капиллярах, пронизывающих периферические ткани, парциальное давление кислорода снижается до 5 кПа, а значение рН снижается до 7,2. В результате равнове–сие смещается влево. В оттекающей с периферии кро–ви гемоглобин насыщен кислородом лишь на 65%.








Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх