• ЗЕМЛЯ — ЛУНА И ОБРАТНО
  • СКВОЗЬ АТМОСФЕРУ
  • ОТ ТРОЙНОГО К НУЛЕВОМУ ВЕСУ
  • ПЕРВЫЕ ДЕСЯТЬ МИНУТ
  • ТРАССА ЗЕМЛЯ — ЛУНА
  • СО СПУТНИКОМ ИЛИ БЕЗ?
  • ЧЕЛОВЕК В КОСМИЧЕСКОМ ПОЛЕТЕ
  • РАДИО- И ЭЛЕКТРОПОМОЩНИКИ
  • НА САМОМ ДАЛЬНЕМ ВОСТОКЕ
  • ЧАСТЬ ВТОРАЯ

    МЕЖДУ ЗЕМЛЕЙ И ЛУНОЙ

    ЗЕМЛЯ — ЛУНА И ОБРАТНО

    Штурман корабля «Луна-1» А. В. СОКОЛОВ

    Мы начали штурманскую подготовку задолго до старта. Все приборы были проверены на земле, в воздухе и в вакууме, при перегрузке и при полной потере веса. Астрономы подготовили для нас расчеты пути, составили специальные небесные карты, подробные таблицы и графики. Сейчас, заглянув в график полета, я могу сообщить вам, в какой точке мы должны находиться в любую секунду полета, какая у нас будет в этот момент скорость, в каком направлении мы должны двигаться, по каким звездам ориентироваться К счастью, в межпланетном пространстве всегда ясная погода, всегда видны Земля, Луна, Солнце и звезды, и мы не рискуем заблудиться. Как видите, у межпланетного штурмана есть и кое-какие преимущества.

    Основные наши трудности связаны с экономией топлива. Ради экономии мы проделываем почти весь путь с выключенным двигателем. Из 100 часов полета до Луны и обратно двигатель будет работать минут 15. Остальное время корабль должен лететь за счет скорости, приобретенной при разгоне, или же за счет притяжения Земли и Луны. Сразу после взлета начинается так называемый активный участок траектории. Активным именуется он потому, что только па этом участке работает двигатель, разгоняя корабль. Здесь у нас два врага — притяжение Земли и сопротивление воздуха. Чтобы уменьшить затрату топлива на преодоление воздушного сопротивления, следовало бы взлетать отвесно вверх, пересекая атмосферу по кратчайшему пути. Но тогда притяжение Земли будет тормозить всего сильнее, уменьшая скорость корабля и тем самым увеличивая продолжительность работы двигателя. Чтобы притяжение не мешало набирать скорость, следует лететь не вертикально вверх, а горизонтально, огибая земной шар. Преодолевая это противоречие, мы вынуждены были остановиться на промежуточном, компромиссном решении. «Луна-1» поднимется круто вверх, затем опишет сложную кривую, постепенно переходя на горизонтальный полет. На высоте 100 километров, где сопротивление воздуха уже невелико, корабль полетит почти параллельно земной поверхности, с запада на восток, чтобы использовать скорость вращения Земли вокруг оси. Набрав необходимую скорость, мы выключим двигатель.

    Какова же эта необходимая скорость? Выбирая ее, мы руководствовались следующими соображениями. Скорость отрыва от Земли равна 11,2 километра в секунду. При такой скорости, если не принимать во внимание сопротивления воздуха, тела покидали бы земной шар и улетали в бесконечность. Нам не нужно лететь в бесконечность, мы хотим добраться только до Луны, поэтому нам достаточна скорость 11,1 километра в секунду (экономия получилась не такая большая, как можно было бы подумать). Но так как мы выключаем двигатель не на поверхности Земли, а на высоте в несколько сот километров, эту величину можно еще уменьшить: ведь чем дальше от центра Земли, тем меньше сила тяжести и соответственно меньше скорость отрыва. В нашем полете необходима скорость 10,7 километра в секунду.

    Покинув Землю с этой наименьшей возможной скоростью, мы долетели бы до Луны через 115 часов, то есть почти через 5 суток. Но мы позволили себе немножко увеличить скорость, приблизительно на 1 процент. И это скромное увеличение сократило продолжительность полета до 50 часов. Мы прибудем на Луну 27 ноября в 12 часов по московскому времени.

    Почему ничтожная прибавка скорости так резко изменила продолжительность полета? Объяснить это можно так: разгоняя корабль до скорости отрыва, мы сообщаем ему огромную энергию. Но почти вся эта энергия тратится на борьбу с притяжением в первые часы. Поблизости от Земли скорость велика, но велика и тормозящая сила земного тяготения. Из-за этого скорость быстро падает, большую часть пути корабль проходит сравнительно медленно. При стопятнадцатичасовом полете средняя скорость корабля — около одного километра в секунду, а наименьшая — 300 метров в секунду, то есть на некоторых участках пути корабль движется медленнее, чем летали реактивные самолеты лет двадцать назад. Наш корабль можно сравнить с пловцом, который переправился через бурную реку, истратил в борьбе с течением все силы и на берег в изнеможении ползет на четвереньках. Понятно, что добавочная энергия, небольшая по сравнению с той, которая необходима для того, чтобы победить притяжение Земли, может резко увеличить среднюю скорость корабля. Кроме того, при этом становится короче и путь корабля.

    Итак, мы набрали нужную начальную скорость, двигатель выключен. Как теперь полетит корабль? Если бы на нас не действовали никакие силы, мы по инерции мчались бы по прямой. Но притяжение Земли искривит наш путь, превратит его в параболу, огибающую Землю В результате мы отправляемся на Луну в тот момент, когда на Кавказе она не видна. Мы увидим нашу цель, только пройдя часть пути.

    За время путешествия, а оно будет длиться 50 часов, Луна, обращаясь вокруг Земли, сама проделает немалый путь — около 180 000 километров — и для земного наблюдателя передвинется из созвездия Рыб в созвездие Овна. Поэтому и мы направимся не к Луне, а к созвездию Овна.

    Пролетев около девяти десятых пути, мы прибудем в ту зону, где притяжение Луны сильнее земного До сих пор скорость все уменьшалась, теперь она снова будет расти. Мы начнем падать на Луну с высоты около 40 000 километров. Падая с такой высоты, наш корабль рухнул бы на Луну со скоростью около 2,9 километра в секунду — ведь атмосферы, способной задержать падение, на Луне нет. Конечно, такое снижение нельзя назвать посадкой, скорее это стрельба прямой наводкой. Подобный спуск неминуемо кончился бы катастрофой. Следовательно, падение нужно затормозить. Подлетая к Луне, мы с помощью рулевых двигателей повернем корабль кормой вперед и включим основной двигатель, который постепенно погасит скорость. Посадка на Луну должна быть очень плавной.

    Что рассказать вам об обратном пути? На Луне взлетные эстакады для нас не приготовлены. Придется стартовать с шасси. Но так как лунное притяжение в 6 раз меньше земного, покинуть наш спутник гораздо легче, чем Землю. Когда мы наберем скорость 1,5 километра в секунду, на высоте 50 километров двигатель будет выключен — при такой скорости мы превратимся в искусственного спутника Луны. Летя с выключенным двигателем на постоянной высоте, мы совершим полный оборот вокруг Луны и посмотрим ее обратную сторону, большая часть которой в это время будет освещена Солнцем. Правда, автоматическая ракета уже сняла на пленку «тыл» Луны, но с более далекого расстояния. Да и вообще, как не воспользоваться случаем и не взглянуть на Луну с «запрещенной» стороны!

    Когда путешествие вокруг Луны закончится, двигатель снова будет включен на короткое время, корабль устремится к Земле. Обратный полет будет совершен по аналогичному пути и продлится столько же времени. Как только корабль удалится от Луны на такое расстояние, что земное притяжение превысит лунное, он начнет падать на Землю, при этом скорость его будет непрерывно увеличиваться.

    Посадка на Землю — один из самых сложных и опасных этапов нашего путешествия. На высоте около 1000 километров мы повернем корабль кормой к Земле и включим двигатель, чтобы затормозить падение, уменьшить скорость от 11 до 7 километров в секунду. Затем корабль снова повернется носом к Земле, и оставшаяся скорость будет погашена сопротивлением воздуха. Для этого придется, между прочим, совершить кругосветное путешествие. Таким образом, весь земной шар будет нашим аэродромом, и над этим «аэродромом» мы сделаем круг перед посадкой. Мы учитываем, что наш аэродром вращается вокруг своей оси с запада на восток, значит, если мы подлетим к Цимлянскому морю с запада, наша скорость по отношению к этому морю будет меньше и легче будет ее погасить. Тренируясь, я несколько раз сажал на Цимлянское море скоростные заатмосферные ракеты, думаю, что не промахнусь и на этот раз.

    СКВОЗЬ АТМОСФЕРУ

    Старший научный сотрудник Геофизического института А. М. ВЛАДИМИРОВ

    Корабль «Луна-1» оторвался от Земли и начал свой полет к далекой цели. Много трудностей придется преодолеть кораблю на его пути длиной около четырехсот тысяч километров. И одной из первых трудностей будет преодоление земной атмосферы.

    Атмосфера играет исключительно важную роль в нашей жизни. Без атмосферы мир был бы безжизненным, безмолвным, почти одноцветным, мертвым, таким, какой откроется нашим путешественникам на Луне.

    Но перед экипажем межпланетного корабля атмосфера предстанет иной — опасным и коварным противником, таящим неожиданные козни. Вот почему астронавтика так заинтересована в детальном изучении атмосферы, в знании ее свойств на всем протяжении, до высот в сотни и даже тысячи километров.

    Пожалуй, главное свойство атмосферы, с которым приходится считаться астронавтике, — сопротивление всякому движущемуся телу, значит и космическому кораблю. Что это — плохо или хорошо?

    И плохо, и хорошо. Плохо — когда корабль взлетает, покидая Землю. На преодоление воздушного сопротивления кораблю придется затрачивать энергию, расходуя драгоценное топливо. Можно ли подсчитать дополнительный расход топлива, связанный с преодолением сопротивления атмосферы? К сожалению, только приблизительно. Полет в нижних слоях атмосферы, в плотном воздухе, изучен уже достаточно хорошо. Иначе обстоит дело на больших высотах, где воздух чрезвычайно разрежен и условия полета принципиально отличаются от хорошо изученных условий полета на малых высотах. Поэтому и не удается пока точно рассчитать сопротивление, которое окажет атмосфера взлетающему межпланетному кораблю. Примерные расчеты, подтвержденные данными автоматических ракет, показывают, что это сопротивление «съест» столько добавочного топлива, что его хватило бы на увеличение конечной скорости корабля почти на 1 километр в секунду.

    Но сопротивление атмосферы не всегда вредно для межпланетного корабля. Иногда оно может быть очень полезным. Речь идет о посадке корабля при его возвращении на Землю или же о посадке на какую-нибудь планету, имеющую атмосферу. Если торможение корабля осуществляется с помощью двигателя, придется расходовать драгоценное топливо. Если же использовать для торможения корабля сопротивление атмосферы, добавочного расхода топлива можно избежать или, по крайней мере, сильно его уменьшить. Правда, такая посадка с использованием торможения в атмосфере связана со значительными трудностями и даже опасностями Самая важная из них — нагрев корабля, летящего в атмосфере. Но от чего зависит такой нагрев? Только ли от сопротивления воздуха? Да, только, хотя космическому кораблю и придется пересекать такие слои атмосферы, где температура превышает сотни и даже тысячи градусов!

    Нижний из этих слоев расположен на высотах в десятки километров. Здесь имеется довольно много озона. Озон, как известно, является близким родственником кислорода, но молекула озона состоит не из двух, а из трех атомов кислорода. Однако физические и химические свойства озона и кислорода во многом различны, в частности, озон задерживает часть солнечных лучей, которую кислород беспрепятственно пропускает. Именно эти лучи вредны для всего живого, так что слой озона является благодетельной защитной оболочкой для жизни на Земле. Поглощая лучи, озон нагревается, и температура воздуха становится выше нуля, хотя на меньших высотах царит мороз в 60°.

    На еще больших высотах воздух насыщен электричеством. Это электричество появляется потому, что под действием самых мощных солнечных лучей молекулы и атомы превращаются в электрические заряженные частицы — ионы, отчего верхние слои атмосферы, начиная с высоты примерно 80 километров, называют ионосферой. Верхние слои атмосферы представляют собой как бы гигантский электрохимический завод — в них непрерывно происходят сложные процессы, связанные с образованием новых веществ.

    В результате этих процессов температура воздуха повышается, достигая сотен и тысяч градусов.

    Однако корабль в верхних слоях атмосферы даже не ощутит этой высокой температуры. Ведь то, что мы называем теплом, — это хаотическое движение молекул, а температура соответствует их средней скорости.

    В ионосфере же воздух неимоверно разрежен, молекул и атомов там ничтожно мало, к хотя эти отдельные частички мчатся с огромной скоростью, они не в состоянии передать оболочке корабля сколько-нибудь заметного количества тепла.

    Но вспомните о судьбе метеора — «сгорающего», испаряющегося в земной атмосфере небесного камня. Если корабль мчится с огромной космической скоростью в воздухе, то он, подобно метеору, прокладывая себе путь, расталкивает частицы воздуха. Когда частицы ударяются о корабль, их кинетическая энергия переходит в тепловую — оболочка корабля нагревается. Этот нагрев будет сильным только в том случае, если число ударяющихся частиц будет велико, то есть только при полете в плотном воздухе, на малых высотах. Вот почему уже давно скоростные самолеты стали забираться все выше над землей — внизу невозможен полет с большой скоростью в значительной мере из-за опасности нагрева.

    Когда же космическому кораблю грозит эта опасность разогрева? Очевидно, не при взлете — ведь в этом случае он пересекает плотные слои атмосферы с относительно малой скоростью. Другое дело — посадка. Врывающийся с космической скоростью в плотные слои атмосферы корабль рискует повторить судьбу метеора, если не будут приняты специальные меры предосторожности. Значит, использовать сопротивление атмосферы для торможения корабля при посадке, о чем говорилось выше, можно, но сделать это нужно умело и осторожно.

    Еще полезнее атмосфера была для предшественниц нашего межпланетного корабля — многоступенчатых автоматических ракет. На первой ступени в этих ракетах стоял воздушно-реактивный двигатель, рабочим веществом которого служит воздух. Таким образом, атмосфера давала некоторое количество рабочего вещества, что позволяло уменьшить взлетный вес ракеты.

    В общем, мы уже достаточно хорошо знаем нашу земную атмосферу, чтобы уверенно направить корабль «Луна-1» в его далекий путь.

    ОТ ТРОЙНОГО К НУЛЕВОМУ ВЕСУ

    Канд. биологических наук С. И. ЛИСИЦЫНА

    Жизнь на Земле возникла около миллиарда лет назад. С тех пор живые существа непрерывно совершенствовались, приспосабливаясь к земным условиям. Но к условиям межпланетным не приспособлены ни люди, ни животные. Изучить эти условия, облегчить человеку межпланетный полет, избавить его от опасностей — такова задача нашей лаборатории. Нам приходилось разрешать множество проблем, но здесь расскажу только об одной — о проблеме веса.

    В земных условиях вес — нечто постоянное и надежное. В Баку вы нальете в цистерну 20 тонн нефти, в Москву доставите те же 20 тонн. Гиря, которая весит один килограмм во Львове, во Владивостоке будет весить столько же. Но за пределами Земли вес становится зыбким и непрочным.

    Почему это происходит? Прежде всего разберемся, что такое вес.

    Повсюду во вселенной действуют силы притяжения. Солнце притягивает Землю, Земля — Луну. Все предметы, находящиеся на земной поверхности, притягиваются к центру Земли — океаны, горы, дома, поезда, мы с вами… Но мы не падаем к центру Земли, этому препятствует твердая почва у нас под ногами. Притяжение прижимает нас к почве, к полу, к стулу, на котором мы сидим. Эта прижимающая сила и есть вес.

    Вес может создаваться не только земным притяжением, но и другими силами. Когда поезд трогается с места и набирает скорость, нас прижимает к спинке сидения сила инерции. На крутом повороте мы чувствуем центробежную силу. Может случиться, что эти силы окажутся больше земного притяжения в несколько раз, тогда и человек будет весить в несколько раз больше, чем обычно.

    С перегрузками имеют дело летчики. Когда, например, самолет выходит из пикирования на большой скорости и описывает над землей дугу, центробежная сила может создать тройную, четверную, даже восьмикратную перегрузку.

    Такие перегрузки — вредное явление. Они разрушительно влияют на нервную и сердечнососудистую системы, на органы слуха и зрения. Даже тренированные летчики переносят их с трудом.

    В межпланетном корабле перегрузки появляются при взлете, когда двигатель разгоняет ракету. Сила инерции прижимает пассажиров к полу, создавая добавочный вес. И чем больше ускорение, тем больше этот добавочный вес по сравнению с силой тяжести. Возникает перегрузка. Чтобы избежать ее, нужно набирать скорость плавно, постепенно. К необходимость экономии топлива требует, чтобы ускорение было как можно больше. Нужно было разрешить это противоречие.

    Мы в своей лаборатории тщательно изучали перегрузки. Опыты показали, что они лучше всего переносятся, если человек лежит на спине, точнее, если перегрузка действует от груди к спине. При обратном направлении — от спины на живот — перегрузку следует уменьшить на треть. Сидящий человек переносит ее гораздо хуже, чем лежащий на спине: в три раза хуже, если перегрузка действует от головы к телу, и в пять раз хуже — от тела к голове.

    Человек, лежащий на спине, без вреда для себя переносит трехкратную перегрузку в течение нескольких минут. Эту величину решено было взять за основу. Поэтому все расчеты двигателя и трассы построены так, чтобы перегрузка не превосходила трехкратной. Пока корабль будет двигаться с ускорением при работающих двигателях, пассажиры будут лежать в специальных противоперегрузочных креслах. В это время люди, которые на Земле весят 70–80 килограммов, в ракете потянули бы на пружинных весах втрое больше — почти четверть тонны.

    Но вот двигатель выключен. Инерционные перегрузки исчезли. А земное тяготение? Тяготение действует на пассажиров, но оно не создает веса. Выше говорилось, что вес возникает тогда, когда притяжение прижимает нас к неподвижному препятствию, например к земной поверхности. Но ракета не является неподвижным препятствием — под влиянием притяжения она сама падает на Землю, а в конце полета — на Луну. Ведь всякий предмет, находящийся в поле тяготения какого-либо небесного тела, обязательно падает на него. А удаляется предмет, падая, или приближается — это зависит от его начальной скорости. Вместе с падающей ракетой падают и пассажиры. Притяжение есть, но нет прижимающей силы. И вес исчезает. Его не будет совсем, пока двигатель не начнет работать. Веса не будет двое суток. Как люди перенесут это?

    С отсутствием веса люди встречаются очень редко. Практически вес может почти исчезнуть в стремительно опускающемся лифте ненадолго, на одну-две секунды. Это довольно неприятное ощущение. В самолете вес есть, потому что самолет опирается на воздух и не падает на землю. Вес ощущает и парашютист, потому что воздух придерживает его падение. Но в высотных скоростных ионосферных самолетах вес пропадает минут на 10–20, а то и больше. Эти самолеты при старте набирают скорость и высоту, а затем их двигатель выключается. И с этого момента вес исчезает совсем. Он появляется, когда в нижних плотных слоях атмосферы воздух начинает тормозить падение. По существу, такой полет — маленькое космическое путешествие, где и станция отправления и станция назначения находятся на Земле.

    Как показали эти полеты, невесомость переносится в общем безболезненно, ибо работа основных органов человека — сердца, мозга, желудка, мускулов, желез — не зависит от тяжести. Но, конечно, незамеченной невесомость не проходит, и прежде всего она отражается на органах равновесия.

    Равновесием у нас заведует вестибулярный аппарат, он находится во внутреннем ухе, в так называемом лабиринте. Лабиринт состоит из трех частей, в одной из них — слуховая улитка, в двух других помещается вестибулярный аппарат, состоящий из преддверия (по латыни «вестибулум») и полукружных каналов.

    Этот аппарат помогает человеку ориентироваться в пространстве и поддерживать равновесие. Устроен он довольно сложно. Три полукружных канала расположены в трех взаимно перпендикулярных плоскостях. Все они заполнены тканевой жидкостью. При движении головы жидкость по инерции отстает от стенок и отклоняет чувствительные волоски в каналах. Но сила инерции не зависит от веса, значит, этот аппарат не может быть поврежден невесомостью. Иначе обстоит дело с чувствительным отолитовым аппаратом, находящимся в преддверии. Здесь имеются мешочки, заполненные той же тканевой жидкостью, в которой плавают отолиты — кристаллики углекислой извести. Отолиты чуть-чуть тяжелее жидкости и слегка надавливают на чувствительные клетки, докладывая о положении головы и тела в пространстве. Здесь, конечно, вес имеет значение. Когда вместе с человеком и отолиты потеряют вес, они будут попадать не на те клетки, доставлять в мозг неправильные донесения, утомлять и путать нервную систему. Уже в ионосферных ракетах у многих пассажиров появлялись головокружение, тошнота, одышка…

    В полете на Луну, где невесомость продлится двое суток, может проявиться особая «межпланетная болезнь», очень похожая на морскую.

    Морскую болезнь побеждают привычкой или лекарствами. Есть, кроме того, счастливые люди, не восприимчивые к качке. Можно ли тренировкой преодолеть межпланетную болезнь? Вопрос этот важен не столько для полета на Луну, сколько для будущих полетов на Марс и на Венеру, которые продлятся не два дня, а несколько месяцев. В крайнем случае придется создавать вес искусственно, вращая космический корабль. При этом появляется центробежная сила, прижимающая пассажиров к стенкам. Но такое решение технически сложно, громоздко и потому нежелательно. Полет на Луну покажет, есть ли в нем необходимость. Понятно, с каким нетерпением мы ждем результатов этого полета.

    ПЕРВЫЕ ДЕСЯТЬ МИНУТ

    Репортаж ведет участник полета доктор Т. А. АКОПЯН

    Привет вам из межпланетного пространства, дорогие земляки! Дорогие земляки… С особым чувством произносим это слово мы, покинувшие Землю 10 минут назад. 10 минут — и столько всего произошло! Попробую сейчас рассказать все по порядку.

    10 минут назад мы были рядом с вами, у подножья Казбека. Одетые в скафандры, мы сидели в кабине, пристегнутые к мягким креслам, каждый на своем месте. Перед глазами у нас были щиты с лампочками — у Тамарина щиты огромные, со всеми приборами, относящимися к механизмам корабля, у меня — небольшой стенд. Глядя на него, я мог видеть, что температура у нас нормальная, воздух чистый, влажность достаточная и что у доктора Акопяна пульс учащенный. Впрочем, у всех остальных участников тоже пульс повысился. Пусть попробуют отрицать, что они не волновались. Их волнение было подмечено лампочками и записано самопишущими приборами на ленту.

    И вдруг грохнуло, взревело, рвануло. Могучая сила бросила меня на кресло, придавила к нему, стиснула грудь. Несколько секунд, оглушенный, раздавленный, я ловил воздух ртом. Пожилые толстяки поймут меня. Помните вы, как тяжело было вашему сердцу, когда вы прибавили лишних 5 килограммов. А я в момент старта прибавил 140 кило сразу, потяжелел втрое.

    Но тренировка помогла. Через несколько секунд я оправился и повернул отяжелевшую голову к окну.

    Казалось, что склон почти отвесный. Но чувства обманывали нас. В космическом полете вообще нельзя доверяться чувствам. Просто двигатель был сильнее, чем земная тяжесть, и, пока он работал, все время казалось, что ракета летит прямо вверх.

    Но вот мелькает округлая вершина горы, открывается обширный вид на изрезанную, изломанную поверхность: гряды, конусы, узкие ущелья, окутанные туманом. Мы летим вверх все стремительнее, а кажется — медленнее. Горы уходят вниз, окутываясь голубой дымкой. Потом оказывается, что у дымки заметная верхняя граница, что выше нее — ярко-синее, совсем не зимнее небо.

    Синий цвет постепенно переходит в ультрамариновый, наливается лиловатыми оттенками, становится чернильно-лиловым. Мы уже в стратосфере. И все это занимает одну минуту. К концу второй минуты, набрав высоту, ракета поворачивает на восток. Нам кажется, что ракета поднимается все круче, даже запрокидывается. Но это очередной обман. На самом деле Земля под нами.

    Плывут далекие, скрытые белесым туманом незнакомые хребты и ущелья Дагестана. Потом плоское темное пятно. Очертания его на редкость знакомы — это Каспийское море. Мы видим его целиком — и острый Апшеронский полуостров и отпочковавшийся Кара-Богаз. Перед нами живая карта. Она неясна, смазана облаками. Карта ползет с востока на запад. Теперь я уже употребляю слово «ползет». Море кажется нам просто темной равниной, и эту равнину мы пересекаем за полторы минуты. Все это захватывающе интересно и непривычно. Гляжу, стараюсь все увидеть и запомнить. За Каспием снега нет, пустыня кажется красноватой. Потом снова темная равнина Аральского моря. К ней примыкает серовато-оливковая полоса — орошенные берега Аму-Дарьи. Гляжу на них и стараюсь представить, похожи ли они на так называемые каналы Марса. Пожалуй, очень похожи: зеленоватая полоска на красном фоне.

    Земля все дальше. Теперь она не похожа на чашу. Мы видим ее круглый край, окаймленный туманной полоской тропосферы. Горизонт все шире, и от этого легче ориентироваться.

    Почти семь минут ракета с ревом и воем мчится вдоль этой светящейся, слегка подкрашенной карты. И вдруг тишина. Двигатель выключен. Над пультом командира появляется цифра 10,7 — исходная скорость набрана. Тяжесть исчезает мгновенно Мы срываемся. И падаем… падаем… падаем. Кружится голова, тошнит, хочется схватиться руками за кресла. Куда же мы летим? За окном все то же. Красноватые пустыни, разрезанные бриллиантовой полосой Тянь-Шаня. Итак, начинается пятидесятичасовой полет при отсутствии веса. Надо привыкать к невесомости.

    Все это произошло с нами за десять минут. И десять минут понадобилось, чтобы я бегло рассказал о первых впечатлениях. Сейчас 10 часов 20 минут по вашему, кавказскому, времени. Который час у нас — затрудняюсь сказать. Мы уже пролетели 10 000 километров от Казбека. Справа, за спиной у нас, ослепительно жгучее Солнце; впереди — Луна, примерно такая же, как у нас на Земле. И Солнце и Луна — на фоне черного звездного неба. Но о звездах после, сейчас не до них. Самое замечательное слева, сзади от нас — земной шар. Мы смотрим на него с высоты 3000 километров. Он занимает четверть неба. Кажется, только сейчас, видя всю планету целиком, понимаешь, какая это громада. Левая половина Земли светится, то есть она освещена Солнцем, но нам кажется, что сияет Земля. Прямо перед нами Дальний Восток и Япония, дальше на восток — глубокая тьма. Неосвещенная половина Земли кажется темнее неба. И только с запада на восток, поперек всего Тихого океана, тянется оранжевая лунная дорожка. Товарищи, это нужно посмотреть своими глазами. Подняться и увидеть земной шар весь сразу!..

    Кончаю мою затянувшуюся передачу. Позже, в межпланетном пространстве, когда впечатлений будет меньше, мы все запишем.

    ТРАССА ЗЕМЛЯ — ЛУНА

    Начальник бригады расчета трассы бюро «Л» профессор Г. Н. КОСТРОМИН

    Нашему конструкторскому бюро было поручено не только проектирование и строительство межпланетного корабля для полета на Луну. В бюро была создана и бригада расчета трассы Земля — Луна. Мы работали в тесном контакте с рядом астрономических обсерваторий и научно-исследовательских институтов.

    Точный расчет трассы космического полета Земля — Луна представляет собой сложнейшую научную проблему, связанную с исключительными трудностями.

    Это объясняется тем, что корабль летит в пространстве, где действуют силы тяготения: он притягивается Землей, Солнцем, Луной, планетами. Если бы этих сил не было, то корабль, получивший при взлете с Земли какую-то скорость, летел бы прямолинейно и равномерно до самой цели. Силы тяготения искривляют, изгибают траекторию корабля, превращают ее в сложную кривую.

    Но и притяжение можно было учесть легко, если бы корабль притягивался не всеми небесными телами сразу, а по очереди. Если бы, например, корабль летел все время в поле одного только земного тяготения, то рассчитать траекторию его полета не представляло бы никакого труда. То же самое было бы, конечно, и в случае полета в поле тяготения одного только Солнца, одной только Луны и т д. Такой полет рассчитывается просто. По законам небесной механики корабль в этом случае может лететь только по одной из следующих кривых (они называются коническими сечениями): кругу, эллипсу, параболе и гиперболе. Стоит только знать скорость корабля в начальный момент, чтобы легко рассчитать его дальнейший путь. Однако в действительности на полет нашего корабля одновременно влияет притяжение и Земли, и Луны, и Солнца, и планет солнечной системы. Точного решения такой задачи ученые еще не знают. Потому приходится всю трассу полета на Луну разбивать условно на два основных участка. Принимается, что на каждом из этих участков действует только одно поле тяготения — земное или лунное, в зависимости от того, какое из них сильнее, и рассчитывается соответствующая траектория корабля А затем учитываются многие второстепенные обстоятельства, в первую очередь другие поля тяготения. Все эти второстепенные влияния несколько изменяют первоначально рассчитанную траекторию, вносят в нее, как говорят, «возмущения». Вот из-за них-то и получается таким сложным расчет. А не учти мы этих «возмущений», корабль так сильно отклонится от цели, что на исправление курса потребуется израсходовать много лишнего топлива. И это еще в лучшем случае…

    Но возвратимся к трассе полета Земля — Луна. Когда мы путешествуем на Земле, все равно — по суше или по воде, то обычно в нашем распоряжении всегда много разных возможных маршрутов. Мы выбираем самый короткий или самый интересный маршрут, самый дешевый или самый удобный, самый быстрый или самый верный способ передвижения.

    Не менее, конечно, свободен выбор трассы и путешествия межпланетного. Нам заданы только начальный и конечный пункты этого путешествия. Между ними можно провести бесчисленное множество всевозможных маршрутов, различных трасс. И легко видеть, что этих возможностей еще гораздо больше, чем на Земле, — ведь все эти линии трасс идут в пространстве, а не на поверхности!

    Чем же руководствоваться, выбирая одну-единственную линию-трассу из всех возможных? Очевидно, условия полета по любой возможной трассе будут одинаковыми — всюду абсолютный вакуум и холод мирового пространства, всюду та же опасность встречи с метеоритами. Все то же. Остается одно — скорее добраться до цели и израсходовать при этом поменьше топлива.

    Но, значит, трассу выбрать не так сложно — наилучшая из всех та, для которой время полета наименьшее и расход топлива наименьший И сразу — первая трудность. Нет такой трассы. Мало время полета — велик расход топлива, таков закон межпланетного полета.

    Чем больше топлива мы можем израсходовать на полет, тем быстрее совершим его. Правда, пока нам еще рано думать о курьерских перелетах. Мы еще только выходим на межпланетные пути, еще еле-еле справляемся с самым простым и легким полетом — на Луну. Только для этого полета удается, да и то с большим трудом, разместить на корабле нужный запас топлива. Значит, на этом первом этапе самое главное избрать такой маршрут, который потребует наименьшего расхода топлива.

    Какую же кривую должен прочертить в мировом пространстве наш корабль, летящий на Луну, чтобы расход топлива оказался наименьшим, — эллипс, параболу или гиперболу?

    Мы уже знаем, что корабль, которому при взлете с Земли сообщена скорость отрыва, полетит по параболическому пути; не зря скорость отрыва называют также параболической скоростью. Летя по параболе, корабль в состоянии улететь бесконечно далеко от Земли. Значит, он пересечет орбиту Луны в какой-нибудь точке; остается только рассчитать момент взлета и направление взлетающего корабля так, чтобы в этой точке корабль встретил Луну. Если скорость корабля при взлете с Земли будет больше, чем скорость отрыва, то корабль полетит уже не по параболе, а по другой кривой, также уводящей корабль в бесконечность — по одной из бесчисленного множества возможных гипербол. Чем больше начальная скорость корабля, тем сильнее «раскрыта» гипербола, тем прямее и короче путь корабля к Луне. Именно так и будут совершать свои полеты курьерские корабли будущего — они достигнут цели всего за несколько часов. Пока мы можем только мечтать об этом времени — нам не под силу сообщить кораблю при взлете необходимую для этого огромную скорость. Значит, гипербола исключается, это ясно.

    Но и полет по параболе вовсе не является обязательным. Что случится, если конечная скорость корабля при взлете будет несколько меньше скорости отрыва? Тогда корабль полетит уже не по параболе — траектория его полета будет в этом случае эллипсом. Но ведь эллипс — это не разомкнутая кривая, подобно параболе или гиперболе. Эллипс, как и круг, кривая замкнутая. Это значит, что корабль, взлетевший с Земли по эллипсу, обязательно возвратится, раньше или позже, снова на Землю. Этим и интересна параболическая траектория — она является как бы границей между бесчисленными замкнутыми (эллиптическими) и разомкнутыми (гиперболическими) траекториями.

    Если скорость, которую корабль наберет при взлете, будет немногим меньше скорости отрыва, он залетит, двигаясь по своей эллиптической орбите, очень далеко от Земли, дальше чем находится от нас Луна. Значит, в этом случае, как и при полете по параболе или гиперболе, корабль пересечет лунную орбиту и если все было рассчитано правильно, встретит в точке пересечения Луну. Такие эллипсы и называются поэтому секущими.

    Будем теперь постепенно уменьшать скорость взлетающего корабля. Очевидно, этим самым мы будем уменьшать и то максимальное расстояние, на которое корабль может удалиться от Земли, то есть расстояние до корабля, находящегося, как говорят, в апогее своей эллиптической орбиты. Конечно, мы заинтересованы в том, чтобы скорость корабля была наименьшей, ибо при этом и расход топлива будет наименьшим. На сколько же мы можем уменьшить взлетную скорость корабля по сравнению со скоростью отрыва, чтобы наш корабль все-таки достиг Луны?

    На первый взгляд кажется, что таким предельным случаем является полет по эллипсу, который уже не пересечет орбиту Луны, а только коснется ее в апогее (такой эллипс и называется поэтому касательным).

    Но это впечатление ошибочно. Можно еще уменьшить взлетную скорость корабля, и он все же достигнет Луны. Как же так, ведь при таком уменьшении скорости эллипс, по которому полетит корабль, уже не будет касаться лунной орбиты, и, значит, корабль не встретится с Луной?

    Да, так и случилось бы, если бы Луна не обладала собственным полем тяготения. Но Луна — весьма массивное небесное тело, обладающее значительным притяжением. На расстоянии примерно 40 000 километров от Луны притяжение к ней превосходит притяжение к Земле. Значит, достаточно только нашему кораблю достичь этой зоны, чтобы он изменил направление своего полета и устремился к Луне вместо того, чтобы вернуться на Землю по другой стороне эллипса.

    Сколько же можно сэкономить топлива, если лететь не по параболе, а по этому наивыгоднейшему, то есть самому наименьшему эллипсу? Оказывается, что для полета по такому эллипсу скорость корабля при взлете с Земли должна быть всего примерно на 100 метров в секунду меньше, чем скорость отрыва, то есть 11,1 километра в секунду вместо 11,2 километра в секунду. Это кажется даже неправдоподобным и, во всяком случае, очень неожиданным — чтобы перенести корабль с расстояния 340 000 километров от Земли в бесконечность, взлетную скорость надо увеличить всего на 100 метров в секунду.

    В этом заключается очень интересная особенность трасс в мировом пространстве. Когда взлетная скорость корабля близка к скорости отрыва, то ничтожное увеличение этой скорости очень сильно наменяет расстояние, которое корабль пролетает, удаляясь от Земли. Вот еще один такой пример. Если при скорости 11,1 километра в секунду корабль залетает на расстояние 340 000 километров от Земли, то для того, чтобы корабль долетел до орбиты Луны, то есть на 40 000 километров дальше, его взлетная скорость должна быть увеличена всего примерно на 10 метров в секунду. Скорость увеличивается на одну тысячную, а дальность полета возрастает на 40 000 километров!

    Итак, мы установили, что минимальная скорость, которой должен обладать корабль при взлете с Земли, чтобы в конце концов достичь Луны, равна 11,1 километра в секунду. Если все же для корабля «Луна-1» избрана не эта наивыгоднейшая эллиптическая, а параболическая трасса с соответственно большей взлетной скоростью (скоростью отрыва 11,2 километра в секунду), то это объясняется тем, что ценой сравнительно небольшого увеличения затраты топлива таким способом удается существенно уменьшить продолжительность полета — со 115 до 50 часов. Это во всех случаях важно и особенно, конечно, важно для первого полета.

    Обратный полет на Землю корабль «Луна-1» совершит тоже по параболическому маршруту, представляющему собой вторую симметричную ветвь той же параболы.

    Само собой разумеется, что момент отправки корабля с Земли рассчитан нами с большой точностью, чтобы корабль встретил Луну в заданной точке ее орбиты. Что касается обратного полета, то взлет с Луны может быть осуществлен практически в любое время — Земля всегда находится в фокусе того эллипса, по которому вокруг нее движется Луна, искать ее не надо. Важно лишь установить точный момент выключения двигателя корабля, чтобы направление полета корабля при взлете с Луны было правильным.

    В мировом пространстве еще нет расчерченных трасс. Но корабль «Луна-1» будет лететь по тем незримым путям, которые мы указали ему на основе законов небесной механики.

    СО СПУТНИКОМ ИЛИ БЕЗ?

    Старший инженер конструкторского бюро «Л» А. Н. ОСИПОВ

    На бархатно-черном небе — ярко освещенный круг. Он похож на гигантскую шину, повисшую на фоне звезд. На освещенной стороне — вогнутая чаша, на противоположной — купол и решетки. Так выглядит искусственный спутник Земли, межпланетный транзитный вокзал, первая остановка на трассах солнечной системы.

    Вогнутая чаша — это зеркало, собирающее солнечную энергию. В центре его — котлы солнечной электростанции, на противоположной стороне — купол обсерватории. Здесь нет воздуха, нет облаков и удобно вести астрономические наблюдения. Нет и веса, приходится искусственно создавать его, вращая круг. Внутри круга — жилые и служебные помещения, оранжерея, топливные баки. Топливо подвозят с Земли ракеты-танкеры. Вот одна из них мчится снизу, откуда виднеется одетый туманной дымкой покатый край Земли. Другая ракета заправляется топливом, вскоре она полетит на Луну.

    Все это изображено на картине, висящей на стене в нашем конструкторском бюро. К сожалению, в межпланетном пространстве еще нет таких станций. И, глядя на картину, я вспоминаю горячие споры, которые велись много лет, вплоть до проектирования корабля «Луна-1».

    Суть этих опоров можно свести к одному вопросу — со спутником или без него? Иначе говоря можно организовать полет без помощи искусственного спутника Земли или нельзя?

    Два возможных метода осуществления межпланетного полета были предложены еще Циолковским. Один метод — использование искусственного спутника Земли в качестве топливозаправочной станции, другой — создание многоступенчатого ракетного поезда. Каковы же возможности, достоинства и недостатки этих методов? Какой из них избрать, если простой одноступенчатый корабль не способен решить задачу? Вот о чем велись споры. Как всегда бывает в таких случаях, были убежденные сторонники спутника и были его решительные противники — не менее убежденные поклонники идеи ракетного поезда. Находились и скептики, сулившие неудачу и тем, и другим.

    Я честно признаюсь, что стоял тогда за спутник, как стою за него и сейчас. Должен сказать, что эта моя точка зрения основана на неоспоримых общеизвестных фактах.

    Чтобы доказать свою силу, лучше всего показать слабость противника. В самом деле, чего можно достичь с помощью метода ступенчатых ракет? Пусть даже в нашем распоряжении имеется наилучшее из возможных в будущем химическое топливо для жидкостных ракетных двигателей. Будем считать, что это топливо обеспечит скорость истечения газов при полете в межпланетном пространстве (то есть когда газы вытекают практически в абсолютный вакуум), равную 5 километрам в секунду.

    Чтобы определить запас топлива для любого межпланетного полета, нужно знать соответствующую идеальную скорость. Для полета на Луну идеальная скорость корабля должна быть не меньше 23 километров в секунду. Такая величина и принята для корабля «Луна-1». Почему именно 23? Посмотрим, из чего складывается эта скорость.

    В любом межпланетном полете нужно преодолеть земное тяготение. Для этого требуется 11,2 километра в секунду. Воздушное сопротивление и потери под действием силы тяжести при взлете будут стоить не менее 1 километра в секунду, а то и все 1,5 километра. Торможение корабля при посадке на Луну потребует примерно 2,9 километра в секунду, да при взлете с Луны в обратный путь понадобится столько же. На маневрирование в межпланетном пространстве, то есть исправление курса, и на резерв, без которого нельзя пускаться в путь, — еще не менее 1 километра. Вот уже получилось 19 километров в секунду.

    Все? Нет еще. Как быть теперь с посадкой на Землю? Если всю скорость корабля погашать двигателем, то для этого понадобится еще примерно 12 километров в секунду. Тогда общая идеальная скорость будет равна около 31 километра в секунду. Можно ли уменьшить эту огромную цифру? Да, можно, если затормозить корабль за счет сопротивления атмосферы. Правда, и в этом случае придется сначала включить двигатель, чтобы уменьшить скорость корабля на 4 километра в секунду. К 19 прибавим не 12, а 4. Получается идеальная скорость, равная примерно 23 километрам в секунду.

    Сколько же топлива нужно запасти на корабле, чтобы обеспечить такую идеальную скорость? Ответ на это дает формула Циолковского. По этой формуле получается, что вес топлива на корабле при взлете должен составлять 99 процентов общего веса корабля! Конечно, построить такой корабль нельзя, даже если на нем нет никакого полезного груза — только стенки, двигатель и топливо. При этом в лучшем случае можно получить 90 процентов. Да и то чрезвычайно трудно У нас же, как известно, имеется большая полезная нагрузка. По заданию она должна равняться 5 тоннам — столько весит кабина с пассажирами, оборудованием, приборами, запасами и прочим.

    Посмотрим же, насколько облегчает дело ракетный поезд, состоящий из четырех ступеней; увеличение числа ступеней дает малый выигрыш, но очень усложняет поезд. Вот какие результаты даст произведенный нами довольно сложный расчет, который, конечно, мы здесь опустим.

    Первая ступень поезда должна весить 3500 тонн, из которых 3150 тонн — топливо и 350 тонн — вес самой ракеты. Когда при взлете все топливо на этой ступени будет израсходовано, она автоматически отделится от поезда и упадет на Землю. В то же мгновение включится двигатель второй ступени. Эта ступень весит 752 тонны, из которых 677 тонн топлива.

    После выработки всего топлива второй ступени она тоже отделится от поезда. В этот момент поезд будет лететь уже с заданной скоростью отрыва. Таким образом, к Луне приблизится укороченный поезд: вместо четырех он будет состоять всего лишь из двух ступеней общим весом 218 тонн.

    На торможение при посадке на Луну будет израсходовано все топливо третьей ступени. Вес этого топлива равен 138 тоннам, а вес самой ступени — 15 тоннам. Третья ступень будет отделена от последней, четвертой, уже на Луне и оставлена там — она не нужна для обратного полета.

    Взлетит с Луны последняя ступень, четвертая. Общий вес этой ступени — 65 тонн, из которых 50 тонн приходится на долю топлива, 10 тонн — на ракету с крылом и 5 тонн — на пассажирскую кабину со всем содержимым. Эта последняя ступень и совершит посадку на Землю.

    Как видите, расчет показывает, что такой четырехступенчатый корабль для полета на Луну должен весить при взлете с Земли 4470 тонн! Конечно, можно построить такую ракету размерами и весом с теплоход, но это очень нелегкая задача.

    Судите теперь сами, насколько проще полететь на Луну, если можно воспользоваться заправкой топливом в пути, как это уже давно делается в авиации. В этом случае запас топлива при взлете можно сильно уменьшить. Значит, сильно уменьшится и взлетный вес корабля.

    Насколько же?

    Представим себе, что уже создан искусственный спутник Земли — космическое топливохранилище. Этот спутник обращается вокруг Земли по «суточной» орбите на высоте 35 900 километров, то есть делает один оборот вокруг Земли за сутки. На этой высоте скорость спутника равна примерно 3,1 километра в секунду.

    Чтобы достичь этого спутника, идеальная скорость корабля при взлете с Земли должна равняться примерно 12 километрам в секунду; 10 километров в секунду даст топливо, залитое в баки корабля, остальная часть необходимой скорости будет получена с помощью стартовой ракеты. Когда корабль достигнет спутника, его топливные баки будут почти пустыми, их придется заново наполнять. Сколько же теперь нужно взять топлива, чтобы корабль смог продолжать свой полет на Луну? Произведем подсчет. Спутник и причаливший к нему корабль мчатся сейчас вокруг Земли со скоростью 3,1 километра в секунду. Но скорость отрыва от Земли на этой высоте равна 4,4 километра в секунду. Значит, чтобы улететь на Луну, корабль должен развить добавочную скорость, равную 1,3 километра в секунду.

    Улучив нужный момент, чтобы полностью использовать скорость спутника, корабль направится к Луне. Падение на Луну нужно затормозить — на это требуется 2,9 километра в секунду. Столько же будет израсходовано при взлете. Чтобы причалить к спутнику в самый благоприятный момент на обратном пути, нужно погасить лишнюю скорость — 1,3 километра в секунду. Прибавим еще 1,6 километра в секунду — резерв для маневрирования. Получается 1,3 + 2,9 + 2,9 + 1,3 + 1,6 = 10 километров в секунду. Не больше, чем при взлете с Земли. Мы израсходовали все запасенное топливо. Но никто не мешает нам еще раз воспользоваться услугами спутника и заправиться здесь вторично, на этот раз для посадки на Землю. Спуск на Землю потребует сравнительно немного топлива. Нужно будет, отчалив от спутника, уменьшить скорость корабля, и он начнет падать на Землю. При этом разовьется скорость около 11 километров в секунду, большую часть которой мы надеемся погасить с помощью атмосферы.

    Итак, вместимость наших баков должна быть рассчитана на идеальную скорость — 10 километров в секунду. Не 23, а только 10.

    Но это значит, в соответствии с формулой Циолковского, что вес топлива должен составлять не 99 процентов, а лишь 87 процентов общего веса корабля. Как же будет выглядеть корабль в этом случае?

    Вес корабля с пустыми топливными баками будет равен всего 28 тоннам, из которых 5 тонн — полезный груз. Полный вес топлива на корабле будет равен 182 тоннам. Поэтому общий вес корабля при взлете с Земли или старте со спутника на Луну будет равен 210 тоннам. Одноступенчатый корабль весом 210 тонн вместо сложного четырехступенчатого корабля весом 4470 тонн! Вот что значит искусственный спутник! Факты, как говорят, упрямая вещь.

    Правда, противники спутника и не спорят против этого. Они говорят о другом, о том, как трудно построить такой спутник в мировом пространстве — с Земли поднять его туда уже собранным невозможно Говорят они и о том, как сложно осуществить заправку корабля топливом со спутника. Все это верно, но вместе с тем все это преодолимо. Зато такой спутник можно построить один раз, и он будет служить во многих полетах вместо того, чтобы для каждого полета строить громадные многоступенчатые корабли.

    Что касается заполнения топливом самого спутника, то оно будет производиться с помощью грузовых ракет-танкеров с Земли (а когда-нибудь, может быть, и с Луны… Выгоднее!) Эти ракеты, снабженные крыльями, будут иметь на борту экипаж из двух человек. Перелив свое топливо в баки спутника, ракеты будут затем возвращаться на Землю.

    Как известно, спор наш был отложен, когда ученые и конструкторы создали атомно-реактивный двигатель со скоростью истечения газов 10 километров в секунду. При такой скорости истечения уже можно построить простой, то есть одноступенчатый, корабль для полета на Луну. На этом корабле удается разместить все потребное для полета топливо. Созданный нами корабль — это и есть «Луна-1». Но не приди нам помощь со стороны атомной техники — организовать полет на Луну было бы куда сложнее. Вы можете сказать, зачем сейчас вспоминать об этом, раз есть атомный двигатель? Да, конечно, полет на Луну уже совершается. Ну, а если завтра нам поручат проектировать корабль «Марс-1»? Тут уже и атомный двигатель полностью задачи не решит. Придется волей-неволей возвращаться к старым спорам… Разве только ученые-атомники предложат нам к тому времени что-нибудь еще лучшее, скажем, двигатель со скоростью истечения 20 или хотя бы 15 километров в секунду. Но, как говаривали в седую старину на бога надейся, а сам не плошай! Могу поручиться: не один из нас, работников конструкторского бюро «Л», втайне уже давно подумывает над более дальними межпланетными перелетами. Как же тут не вспомнить наши давнишние споры? Ведь в них надо искать решение задачи…

    Я понимаю, конечно, что создание искусственного спутника — топливохранилища в межпланетном пространстве — задача исключительной сложности. Но я знаю, что его можно построить, и я за то, чтобы его построить.

    ЧЕЛОВЕК В КОСМИЧЕСКОМ ПОЛЕТЕ

    Репортаж ведет доктор Т. А. АКОПЯН

    26 ноября, 8 часов 30 минут. Межпланетное пространство.

    Дорогие жители Земли! Вы просите рассказать меня коротко о самом интересном. Но об этом я уже рассказал. Из всего, что мы видели, самое интересное, самое красивое, самое разнообразное — это Земля. Когда смотришь на нее с высоты трех-пяти тысяч километров, то видишь огромный шар, загораживающий все небо, с темными океанами, с блестящими льдами, с голубоватой дымкой атмосферы. Но сейчас эта громадина превратилась в подобие Луны — яркий серп висит позади нас. Левее — Солнце, совсем небольшое по сравнению с этим серпом. Луна впереди выросла, сейчас она больше Солнца, но меньше Земли. Темные пятна морей стали отчетливее. На границе света и тени с некоторым трудом различаешь кратеры. Мы находимся в середине пути.

    Двигатель давно выключен. Тишина. Безмолвие. Движение неощутимо. Кажется, что мы повисли в самом центре необъятного шара. Луна приближается, Земля удаляется, но на глаз это незаметно. Мы неподвижны, и сверху, снизу, впереди, позади, со всех сторон — неподвижные, неизменные звезды. Звезды, тишина, пустота — миллионы километров пустоты, и в самом центре крохотный комочек, где теплится жизнь, — наша кабина. Пожалуй, я расскажу вам о кабине, об этом удивительном сооружении, спасающем жизнь в тех местах, где для жизни нет места.

    Снаружи безвоздушное пространство, отсутствие воздуха, отсутствие давления. Маленькая пробоина, крошечная дырочка, пробитая метеорной частицей, и воздух со свистом и шипеньем выйдет наружу, температура упадет, дышать будет нечем. Поэтому мы сидим в герметических скафандрах. Только прозрачные шлемы сняты, они стоят рядом с нами. Если борт будет поврежден, шлемы можно быстро надеть, почти одним движением.

    Снаружи обилие солнечных лучей, в том числе опасных для здоровья — ультрафиолетовых, рентгеновских. Но металлические стены кабины надежно защищают нас. Правда, самые могучие из лучей — космические — пробивают стенки насквозь, но количество их невелико, и, как показали полеты в ионосфере, космических лучей можно не опасаться.

    Наружная температура? Температуры в межпланетном пространстве, строго говоря, нет никакой. Ведь тепло — это движение молекул, а в безвоздушном пространстве молекул почти нет. Но стенки корабля, конечно, имеют температуру. Там, где борта освещены Солнцем, они накаляются, как железная кровля; на противоположной стороне — в тени — температура ниже 100°. Чтобы поддерживать в кабине необходимые условия, нам предлагали сложные устройства, выравнивающие температуру: нагревающие теневую сторону за счет солнечной и охлаждающие солнечную сторону за счет теневой. Но мы отказались от этой громоздкой системы. В герметической оболочке кабины есть теплоизоляционный слой, надежно защищающий и от жары и от холода, а в самой кабине — установка для кондиционирования воздуха, электрическое отопление и электрическое охлаждение.

    Итак, температура у нас обычная, комнатная. Но мы не в комнате, мы в межпланетном пространстве. О полете нельзя забыть даже с закрытыми глазами. При взлете нам напоминала о нем перегрузка. Но мы отлежались на противоперегрузочных койках, а когда двигатель был выключен, превратили эти койки в кресла. И сейчас большей частью мы сидим в этих креслах. Когда не ощущаешь веса, лучше сидеть неподвижно. В свое время мы много тренировались, чтобы привыкнуть к невесомости.

    В мире невесомости нам нужно заново учиться ходить, двигать руками и ногами, потому что привычные движения приводят к неожиданным результатам. Хочешь шагнуть — ударяешься затылком о потолок, хочешь махнуть рукой — поворачиваешься в другую сторону. Чтобы не набивать шишки при каждом движении, мы вынуждены были внутренние стены кабины, пол и потолок одеть мягким упругим материалом. Но, вообще говоря, мы сидим смирно в своих креслах, и по той причине, что не так заманчиво плавать по кабине, и по тому, что все кругом заставлено: повсюду припасы, аппараты, экраны, щиты, ящики. Лавировать среди них не так удобно. Мы передвигаемся вдоль стен, на которых повсюду множество ручек, — можно перехватываться и подтягиваться.

    И работая и отдыхая, мы пристегиваемся к креслам. При отсутствии веса спать можно, повиснув в воздухе. Но практически это не очень удобно.

    Путешественники на Луну обеспечены запасом пищи по научно обоснованным нормам. При интенсивной работе человек выделяет около 3700 больших калорий в сутки. Эти потери тепла надо восполнить пищей. Исходя из такой нормы, строятся рационы летчиков и водолазов. Воспользовавшись этим же расчетом, мы составили меню из наиболее калорийных и питательных продуктов.

    Путешествие продлится 14 дней, но на всякий случай мы обеспечены пятинедельным запасом продовольствия.

    Обеды, завтраки и ужины в летящей ракете тоже отличаются от земных. Как вскипятить чайник? Я вспоминаю, сколько разговоров об этом было в конструкторском бюро «Л». Неприятности начнутся с того, что возле дна вода закипит, а выше останется холодной, так как из-за отсутствия тяжести теплая вода не поднимется вверх, холодная не опустится вниз. Наклонив чайник, мы не извлечем из него ни капли, воду ничто не притягивает снаружи. Когда мы встряхнем чайник посильнее, огромная капля, вырвавшись из носика, повиснет в воздухе. Если мы прикоснемся к ней губами, она облепит лицо и растечется по нему.

    Поэтому наша столовая (если так можно назвать откидной стол и буфет в стене) оборудована с учетом невесомости. Все предметы в шкафу и на столе закреплены. Вместо чашек у нас бутылки с узким горлышком, мы высасываем их содержимое с помощью стеклянной трубочки. Переливаем жидкость из одного сосуда в другой, применяя приспособление, напоминающее пульверизатор с резиновой грушей. Сварить чай, кофе и какао, если это потребуется, можно будет в специальном электрическом котелке. Для того чтобы слои жидкости перемешивались и нагревались равномерно, сосуд вращается. При этом создается центробежная сила, которая заменяет для жидкости исчезнувшую силу тяжести.

    Даже умывание оказалось сложной проблемой в невесомой кабине. Водопроводные краны, ванны, души не пригодны в обстановке, где вода теряет основное свойство — течь, перемещаться сверху вниз… Поэтому мы умываемся с помощью губки. Губка втягивает в себя жидкость потому, что внутри ее создаются полости с разреженным воздухом. А давление воздуха существует вне зависимости от силы тяжести.

    Дыхание в межпланетном корабле также требует особой заботы. Мы взяли с собой запас жидкого кислорода, который хранится в особых сосудах при низкой температуре. Удельный объем жидкого кислорода невелик. Одного литра его достаточно, чтобы обеспечить человека на целые сутки. Но люди не только вдыхают воздух, но и выдыхают. Специальный конденсатор непрерывно очищает воздух в кабине. Очистка происходит при температуре замерзания углекислого газа, то есть при минус 78 градусах. Твердая углекислота удаляется, а воздух пополняется кислородом и возвращается в кабину.

    Все это производится автоматическими приборами. Воздух у нас все время свежий и пахучий, как в лесу после грозы, потому что вместе с кислородом подается некоторое количество озона. Озон обладает сильным обеззараживающим действием. В герметически закрытой кабине он особенно приятен и полезен. Конденсатор, между прочим, извлекает из воздуха и воду, которая испаряется человеческим телом. Влага эта, насыщенная затем воздухом и солями, могла бы полностью покрыть суточную потребность человека в воде — примерно 2,5 килограмма. Интересно отметить, что человек выделяет воды больше, чем он поглощает с питьем и пищей. Это происходит потому, что в недрах нашего организма некоторая часть кислорода, вдыхаемого с воздухом, и водорода, содержащегося в продуктах питания, соединяются, образуя воду. Количество такой синтезированной воды доходит в сутки до 400 граммов. Таким образом, у нас есть возможность экономить воду: сначала мы ее пьем, потом выдыхаем, вновь собираем и используем для технических нужд.

    Все это хозяйство в моем ведении: я слежу за воздухом, пищей, питьем, чистотой. Кроме того, я наблюдаю за здоровьем и самочувствием своих товарищей. Таким образом, мы — и наблюдатели, и объекты наблюдения. Вот сейчас один из моих объектов ерзает и смотрит на часы. По его мнению, пора завтракать. Поэтому я должен проститься с вами, товарищи. Из врача и радиокорреспондента я на время превращусь в шеф-повара. После завтрака я снова буду врачом, а в 12 часов 30 минут опять корреспондентом.

    РАДИО- И ЭЛЕКТРОПОМОЩНИКИ

    Конструктор системы радиотелеуправления Р. И. ВИНОГРАДОВ

    На корабле «Луна-1» четыре человека. Но у них много верных помощников. Это — радиотехнические и электротехнические устройства, аппараты и приборы, автоматически работающие и автоматически контролирующие себя. Причем на корабле будет меньшая часть их — самые легкие и небольшие по размеру. А большая часть располагается на Земле.

    В короткой беседе невозможно охарактеризовать каждый прибор и аппарат. И поэтому я расскажу о некоторых, наиболее существенных приборах и аппаратах, находящихся на борту космического корабля.

    Среди них — прежде всего приборы, контролирующие и управляющие атомным двигателем. Как известно, ход атомной реакции резко меняется, если прибавить или убавить немного атомного горючего. Небольшой излишек урана — и температура быстро идет вверх, скорость газов повышается, ракета устремляется вперед, выходит из графика, сбивается с пути. Это — в лучшем случае. При дальнейшем повышении температуры стенки расплавятся, двигатель выйдет из строя, и тогда космический корабль превратится в вечного спутника Земли или Солнца, летящего по совершенно случайной орбите. Спасение экипажа такого корабля вряд ли будет возможно. В самом худшем случае взрыв двигателя мгновенно уничтожит корабль.

    Человеку нельзя поручить управление атомным двигателем. Процессы там так скоротечны и разнообразны, что человеческий глаз не уследит за всеми приборами, медлительные человеческие руки не успеют вмешаться. Поэтому двигателем на корабле управляет весьма сложный автоматический регулятор.

    Отклонение рабочего режима двигателя от программы улавливается чувствительными измерительными приборами, приборы посылают электрические сигналы в регулятор. Электрический ток распространяется со скоростью света, регулятор получает сигнал почти мгновенно и быстро вырабатывает необходимую электрическую команду. Команда по проводам передается моторам, которые управляют клапанами, регулирующими подачу ядерного горючего и воды. Все это совершается в доли секунды, отклонения своевременно исправляются, двигатель работает точно по программе.

    Очень сложная и ответственная группа приборов обеспечивает управление и стабилизацию корабля в полете. Количество этой аппаратуры и ее сложность можно представить себе, если сказать, что в ее состав входит несколько десятков тысяч электронных и кристаллических ламп (размером немного более рисового зернышка) и сотни километров различного кабеля и провода. Напомню, что в телевизоре всего лишь два десятка ламп.

    Главная задача аппаратуры — полная автоматизация управления. На корабле предусмотрено резервное ручное управление, которым экипаж сможет воспользоваться, если выйдет из строя и наземная, и бортовая аппаратура. Но практически это почти невероятно, так как на борту находятся два комплекта аппаратуры, заменяющих друг друга, а на Земле действуют три комплекта.

    Я говорил уже, что на корабле находятся только самые легкие и небольшие приборы. Основная аппаратура расположена на Земле, где мы не связаны размерами и весом. Управлять полетом мы будем с Земли. Взлет корабля и достижение космической скорости осуществляются автоматически. Человеку оставлена только одна функция: проверив готовность корабля и экипажа, нажать кнопку и тем самым подать команду многочисленным автоматически действующим приборам.

    Добавочные трудности создает нам вращение Земли. Радиоволны не проходят сквозь земной шар, и когда ракета скроется за горизонтом, мы не сможем управлять ее полетом. Поэтому нам пришлось создать, кроме кавказской станции управления, еще одну, на противоположной стороне земного шара — на берегу Берингова моря. Эти две станции будут поочередно управлять космическим кораблем.

    Чтобы избежать опасных столкновений с метеоритами, мы сконструировали специальную бортовую радиолокационную станцию. Радиолокаторы, установленные на корпусе корабля, заранее сообщают о приближении крупных метеоритных частиц, направлении их полета и скорости. Если по данным этих радиолокаторов грозит столкновение, автоматы посылают электрические сигналы, которые передаются двигателям крыла, а те изменяют направление полета. Все это выполняется мгновенно.

    Весьма ответственный этап — посадка корабля на лунную поверхность. В это время вступает в действие дополнительная, очень сложная бортовая и наземная аппаратура, которая названа нами «лунным высотомером». С ее помощью непрерывно определяется расстояние между кораблем и лунной поверхностью и совершается посадка на Луну.

    Четверо советских людей улетели за сотни тысяч километров от Родины. Но они не будут одиноки в межпланетных просторах. Радио свяжет их с Землей. На корабле установлены радиотелефон и аппарат для передачи изображений. На одних частотах передаются сигналы от наземной станции к механизмам корабля, на других — с корабля на Землю. Особый радиоканал отведен врачам. Они непрерывно наблюдают за самочувствием путешественников и получают сведения об их здоровье от специальных приборов, вмонтированных в скафандры. В случае каких-нибудь непредвиденных событий, влияющих на здоровье экипажа, врачи устроят консилиум и передадут по радио свои предписания.

    На корабле есть еще автоматический «регулятор комфорта» — аппарат, который поддерживает постоянную температуру, влажность, давление и ведает очисткой воздуха. Есть автоматические контролеры моторов, механизмов… но обо всем не расскажешь. Нужно отметить только, что электротехника и радиотехника обеспечили полет так, что успех его не подлежит сомнению.

    НА САМОМ ДАЛЬНЕМ ВОСТОКЕ

    (Очерк о станции управления, опубликованный в газете «Комсомольская правда»)

    Если когда-нибудь, лет через 200, школьники спросят — кто послал первую ракету на Луну, учитель ответит им коротко:

    «Весь Советский Союз!»

    Весь Советский Союз создавал космический корабль. Запорожье и Урал давали для него качественную сталь, Североуральск — алюминий, Коунрад — медь, рудник № 4 — уран для атомною двигателя. Научные институты Москвы, Ленинграда, Киева, Харькова проектировали конструкции и приборы; всех заводов-поставщиков не перечислишь на одной странице; Кавказ предоставил свои вершины для старта, даже далекая Чукотка приняла участие в покорении Луны — здесь, на берегу Берингова пролива, в самой восточной точке Советского Союза, пришлось поставить вторую станцию автоматического управления.

    Зимой тундра пуста, на тысячи километров ничего не увидишь, кроме сверкающей белизны. И вдруг — горсточка домиков. Паутинка дорог, в центре — высокое здание с куполом, рядом с ним сложные, замысловатые сооружения — антенны межпланетной радиосвязи. Самая важная антенна радиолокационной станции сопровождения находится под куполом, он защищает ее от ветра и снега.

    Давайте войдем в главное здание. Перед нами огромный зал, высокий и светлый. Вдоль стен — металлические шкафы. Сотни мигающих цветных лампочек докладывают дежурным, что многочисленные приборы работают правильно. Прежде всего в глаза бросается огромное световое автоматическое табло — схема полета. Это стеклянная стена размером 10X10 метров. В левом нижнем углу — светлый круг — наша Земля. Луна находится в самом верху справа, по размеру она не больше яблока. Их соединяет белая линия, похожая на вытянутый вопросительный знак. В конце ее, почти у самой Луны, светится красная лампочка. Она показывает положение ракеты. Корабль заканчивает путь, до Луны остается «каких-нибудь» 10 тысяч километров.

    Именно об этом говорят шестизначные цифры, светящиеся на табло. Цифры все время меняются, как в счетчике, автомобильном или электрическом. Сейчас от Земли до ракеты 379 472 километра… нет, уже 473… нет, 379 474 километра. Последняя цифра так и мелькает. Ракета пролетает сейчас около двух километров в секунду.

    В просторном зале под куполом находятся человек шесть, каждый наблюдатель у своей группы приборов. Возле табло — начальник станции Иван Игнатьевич Петров.

    — Вы спрашиваете, каковы задачи станции? — говорит он. — Задача одна — управлять кораблем по всей трассе, вплоть до посадки. Но при этом управлять так, чтобы не расходовать лишнего топлива.

    Чтобы потратить как можно меньше топлива, астрономы и инженеры заранее выбрали и рассчитали трассу и график полета. Наша задача — точно выдержать их. Чтобы исправлять ошибки управления, нужно включать двигатель, то есть расходовать добавочное топливо.

    Эти ненужные затраты и предупреждает наша станция.

    Даже самолет, летящий в дальний путь, тратит несколько процентов лишнего топлива, если вместо автопилота им управляют человеческие руки. На космическом корабле эти затраты возрастают еще больше. Ошибка только на одну десятую процента во взлетной скорости приводит к тому, что корабль пролетит примерно на 40 тысяч километров дальше.

    Если заметить ошибку своевременно, исправить ее нетрудно, а если упустить ее — разница будет нарастать, и запасов топлива не хватит, чтобы вернуться на правильный путь.

    Своевременно замечать ошибки и исправлять их — такова наша задача.

    Радиолокатор автоматического сопровождения, антенна которого находится под куполом, непрерывно следит за ракетой, определяя, где она находится — на каким расстоянии и в каком направлении. Цифры на световом табло — результат его работы. Но здесь они появляются для наглядности. Самая важная работа происходит в специальных шкафах, стоящих по стенкам этого зала. Там размещен электронный счетно-решающий прибор. Получив от радиолокатора сведения о местонахождении ракеты, прибор сравнивает их с заранее рассчитанными цифрами идеальной траектории, устанавливает величину ошибки в положении, направлении и скорости и вырабатывает сигналы команды для двигателей ракеты. Прибор состоит из многих тысяч кристаллических и электронных ламп, конденсаторов и катушек. Одна эта математическая машина заменяет несколько сот расчетчиков — целое проектное бюро. Работу, которую такое бюро выполняло бы весь день, счетно-решающий прибор проделывает за доли секунды. Прибор этот по сравнению с арифмометром то же, что комбайн по сравнению с серпом.

    Вся работа проделывается в шкафах автоматически. Мы видим только ее результаты. На табло вокруг светящихся шестизначных цифр иногда вспыхивают какие-то другие цифры. Сейчас их нет — значит, ракета летит правильно. Нет отклонения от заранее рассчитанной траектории. А здесь правее +0,7. Это значит, что ракета опередила график на 700 метров. 700 метров — величина незначительная, можно ее не исправлять, не включать двигатели и не тревожить напрасно пассажиров ракеты. Ведь они живут в невесомом мире, а включенный двигатель сразу возвратит им вес.

    Ага, ошибка дошла уже до одного километра. Сейчас автоматы управления подадут отсюда радиокоманду, а автоматические приборы на корабле, приняв эту команду, включат двигатель. Видите, цифры уменьшаются: 0,9… 0,8… 0,7… вот уже нет ошибки. Точное совпадение с графиком.

    Я сам слежу за графиком полета и трассы, — продолжал Петров свои объяснения. — Рядом, за соседним пультом, — врач. По отдельному радиоканалу он получает все сведения о самочувствии наших путешественников. Есть еще канал радио- и телевизионной связи. На телевизионных экранах вы можете видеть кабину и то, что находится перед ракетой, — звездное небо и близкую Луну. Особое помещение отведено для радиоаппаратуры, телевизионной связи, буквопечатающего радиотелеграфа. Пользуясь этими аппаратами, многочисленные корреспонденты передают всему миру сообщения о полете смелых исследователей.

    Специальный радиотелеметрический канал отведен инженерам. В конце зала вы найдете светящуюся схему корабля. На ней изображены все моторы, механизмы, аппараты, и возле каждого — лампочка. При малейшей неисправности зажигается красный свет, и тогда дежурный инженер немедленно сообщает в космос Тамарину, где и что нужно исправить. Таким образом, мы облегчаем работу экипажа, который занят научными наблюдениями. Кроме того, лучшие инженеры в случае необходимости могут помочь Тамарину советом…

    Пока Петров рассказывал все это, красная точка на большом табло постепенно приближалась к Луне. На глаз она казалась неподвижной, но стоило отвернуться минуты на три, смещение становилось заметным. Вот уже красный огонек коснулся белой черты.

    Тревожный, продолжительный звонок. Что такое?

    — Прошу прощения, — сказал Петров. — Нам придется прервать беседу. Начинается самый ответственный этап: сближение с Луной, торможение и посадка.










    Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх